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Abstract—This paper considers the fundamental limit of com-
pressed sensing for i.i.d. signal distributions and i.i.d. Gaussian
measurement matrices. Its main contribution is a rigorous
characterization of the asymptotic mutual information (MI) and
minimum mean-square error (MMSE) in this setting. Under mild
technical conditions, our results show that the limiting MI and
MMSE are equal to the values predicted by the replica method
from statistical physics. This resolves a well-known problem that
has remained open for over a decade.

I. INTRODUCTION

The canonical compressed sensing problem can be formu-
lated as follows. The signal is a random n-dimensional vector
Xn = (X1, . . . , Xn) whose entries are drawn independently
from a common distribution PX with finite variance. The signal
is observed using noisy linear measurements of the form

Yk = 〈Ak, Xn〉+Wk,

where {Ak} is a sequence of n-dimensional measurement
vectors, {Wk} is a sequence of standard Gaussian random
variables, and 〈·, ·〉 denotes the Euclidean inner product between
vectors. The primary goal is to reconstruct Xn from the set
of m measurements {(Yk, Ak)}mk=1. Since the reconstruction
problem is symmetric under simultaneous scaling of Xn and
{Wk}, the unit-variance assumption on {Wk} incurs no loss of
generality. In matrix form, the relationship between the signal
and a set of m measurements is given by

Y m = AmXn +Wm

where Am is an m× n measurement matrix whose k-th row
is Ak.

This paper analyzes of the minimum mean-square error
(MMSE) reconstruction in the asymptotic setting where the
number of measurements m and the signal length n increase to
infinity. The focus is on scaling regimes in which the measure-
ment ratio δn = m/n converges to a number δ ∈ (0,∞). The
objective is to show that the normalized mutual information
(MI) and MMSE converge to limits,

In(δn) ,
1

n
I(Xn;Y m | Am)→ I(δ)

Mn(δn) ,
1

n
mmse(Xn | Y m, Am)→M(δ),

almost everywhere and to characterize these limits in terms of
the measurement ratio δ and the signal distribution PX .

Using the replica method from statistical physics, Guo and
Verdú [1] provide an elegant characterization of these limits
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in the setting of i.i.d. measurement matrices. Their result
was stated originally as a generalization of Tanaka’s replica
analysis of code-division multiple-access (CDMA) with binary
signaling [2]. The replica method was also applied specifically
to compressed sensing in [3]–[8]. The main issue, however, is
that the replica method is not rigorous. It requires an exchange
of limits that is unjustified, and it requires the assumption
of replica symmetry, which is unproven in the context of the
compressed sensing problem.

The main result of this paper is that replica prediction
is correct for i.i.d. Gaussian measurement matrices provided
that the signal distribution, PX , has bounded fourth moment
and satisfies a certain ‘single-crossing’ property. The proof
differs from previous approaches in that we first establish some
properties of the finite-length MMSE and MI sequences, and
then use these properties to uniquely characterize their limits.

A. The Replica-Symmetric Prediction

We now describe the results predicted by the replica method.
For a signal distribution PX the function R : R2

+ → R+ is
defined as

R(δ, z) = IX

(
δ

1 + z

)
+
δ

2

[
log(1 + z)− z

1 + z

]
,

where IX(s) = I(X;
√
sX +N) is the scalar mutual informa-

tion function (in nats) of X ∼ PX under independent Gaussian
noise N ∼ N (0, 1) with signal-to-noise ratio s ∈ R+ [1], [4].

Definition 1. The replica-MI function IRS : R+ → R+ and
the replica-MMSE function MRS : R+ → R+ are defined as

IRS(δ) = min
z≥0

R(δ, z)

MRS(δ) ∈ arg min
z≥0

R(δ, z).

The function IRS(δ) is increasing, concave, and thus differen-
tiable almost everywhere. The function MRS(δ) is decreasing
and, thus, continuous almost everywhere. If the minimizer is
not unique, then MRS(δ) may have jump discontinuities and
may not be uniquely defined at those points; see Figure 1.

B. Statement of Main Result

In order to state our results, we need some further definitions.
Let Rz(δ, z) = ∂

∂zR(δ, z) denote the partial derivative of
R(δ, z) with respect to z. The fixed-point curve FP is the
set of (δ, z) pairs where z is a stationary point of R(δ, z), i.e.

FP =
{

(δ, z) ∈ R2
+ : Rz(δ, z) = 0

}
.

To emphasize the connection with mutual information, we often
plot this curve using the change of variables z 7→ 1

2 log(1 + z).
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Fig. 1. Plot of the replica-MMSE as a function of the measurement ratio δ. The signal distribution is given by a three-component Gaussian mixture of the form
PX = 0.4N (0, 5) + αN (40, 5) + (0.6− α)N (220, 5). In the left panel, α = 0.1 and the distribution satisfies the single-crossing property. In the right
panel, α = 0.3 and the distribution does not satisfy the single-crossing property. The fixed-point information curve (dashed blue line) is given by 1

2
log(1 + z)

where z satisfies the fixed-point equation Rz(δ, z) = 0.

The resulting curve, (δ, 1
2 log(1 + z)), is called the fixed-point

information curve; see Figure 1.

Definition 2 (Single-Crossing Property). A signal distribution
PX has the single-crossing property if the replica-MMSE
crosses the fixed-point curve FP at most once.

Assumption 1 (IID Gaussian Measurements). The rows of the
measurement matrix {Ak} are independent Gaussian vectors
with mean zero and covariance n−1In. Furthermore, the noise
{Wk} is i.i.d. Gaussian with mean zero and variance one.

Assumption 2 (IID Signal Entries). The signal entries {Xi}
are independent copies of a random variable X ∼ PX with
bounded fourth moment E

[
X4
]
≤ B.

Assumption 3 (Single-Crossing Property). The signal distri-
bution PX satisfies the single-crossing property.

Theorem 1. Under Assumptions 1-3, we have
(i) The sequence of MI functions In(δ) converges to the

replica prediction. In other words, for all δ ∈ R+,

lim
n→∞

In(δ) = IRS(δ).

(ii) The sequence of MMSE functions Mn(δ) converges
almost everywhere to the replica prediction. In other
words, for all continuity points of MRS(δ),

lim
n→∞

Mn(δ) =MRS(δ).

Remark 1. The primary contribution of Theorem 1 is for
the case where MRS(δ) has a discontinuity. This occurs, for
example, in applications such as compressed sensing with
sparse priors and CDMA with finite alphabet signaling. For
the special case where MRS(δ) is continuous, the validity of
the replica prediction can also be established by combining
the AMP analysis with the I-MMSE relationship [9]–[13].

Remark 2. For a given signal distribution PX the single-
crossing property can be verified numerically by evaluating
the replica-MI and replica-MMSE functions.

C. Related Work

The replica method was developed originally to study mean-
field approximations in spin glasses [14], [15]. It was first
applied to linear estimation problems in the context of CDMA

wireless communication [1], [2], [16], with subsequent work
focusing on the compressed sensing directly [3]–[8].

Within the context of compressed sensing, the results of the
replica method have been proven rigorously in a number of
settings. One example is given by message passing on matrices
with special structure, such as sparsity [9], [17], [18] or spatial
coupling [19]–[21]. However, in the case of i.i.d. matrices,
the results are limited to signal distributions with a unique
fixed point [10], [12] (e.g. Gaussian inputs [22], [23]). For the
special case of i.i.d. matrices with binary inputs, it has also
been shown that the replica prediction provides an upper bound
for the asymptotic mutual information [24]. Bounds on the
locations of discontinuities in the MMSE with sparse priors
have also been obtain by analyzing the problem of approximate
support recovery [6]–[8].

Recent work by Huleihel and Merhav [25] addresses the
validity of the replica MMSE directly in the case of Gaussian
mixture models, using tools from statistical physics and random
matrix theory [26], [27].

II. OVERVIEW OF PROOF

A. Properties of the Replica Prediction

We begin with an alternate characterization of the replica
limits. Using the I-MMSE relationship [28], it can be shown
that the Rz(δ, z) = 0 condition implies that the replica MMSE
must obey the fixed-point equation

MRS(δ) = mmseX

(
δ

1 +MRS(δ)

)
, (1)

where mmseX(s) = mmse(X |
√
sX +N).

Furthermore, for all δ where I ′RS(δ) exists, one can combine
the envelope theorem [29] with the fixed-point condition (1)
to show that the derivative satisfies

I ′RS(δ) =
1

2
log(1 +MRS(δ)),

almost everywhere. Additionally, one can show that IRS(δ) =
IX(δ) + o(δ) and this implies that

lim
δ→∞

∣∣∣∣∣IX(δ)−
∫ δ

0

1

2
log(1 +MRS(γ))dγ

∣∣∣∣∣ = 0. (2)



Definition 3. Let G be the subset of non-increasing functions
from R+ → R+ such that all g ∈ G satisfy both

g(δ) = mmseX

(
δ

1 + g(δ)

)
(3)

almost everywhere and

lim
δ→∞

∣∣∣∣∣IX(δ)−
∫ δ

0

1

2
log(1 + g(γ))dγ

∣∣∣∣∣ = 0. (4)

By combining (1) and (2), one can show that the replica-
MMSE function satisfies MRS(δ) ∈ G. At this point, it is
natural to ask whether these conditions essentially define
MRS(δ) ∈ G uniquely. The answer to this question is yes if
the signal distribution PX satisfies the single-crossing property.
This is illustrated graphically in Figure 1.

Lemma 2. If PX has the single-crossing property, then
MRS(δ) has at most one discontinuity and all g ∈ G satisfy
g(δ) =MRS(δ) almost everywhere.

B. Properties of the MMSE and MI Sequences

For a fixed problem of size n, the MMSE sequence Mm

and mutual information sequence Im are defined as

Mm ,
1

n
E[tr(Cov(Xn | Y m, Am)]

Im , I(Xn;Y m, Am).

The MMSE sequence is bounded and non-increasing. The MI
sequence is non-decreasing with

lim
m→∞

Im =

{
H(Xn), if PX has finite entropy
+∞, otherwise.

The first and second order MI difference sequences are defiend
as I ′m = Im+1 − Im and I ′′m = I ′m+1 − I ′m. The next result
follows from the chain rule for mutual information.

Lemma 3. Under Assumption 1, the first order and second
order mutual information difference sequences obey

I ′m = I(Xn;Ym+1 | Y m, Am+1) (5)

I ′′m = −I(Ym+1;Ym+2 | Y m, Am+2).

The finite-length sequences are extended to functions of a
continuous parameter δ ∈ R+ using

Mn(δ) ,Mbδnc, I ′n(δ) , I ′bδnc

In(δ) ,
∫ δ

0

I ′n(γ)dγ,

By construction, In(δ) corresponds to the normalized mutual
information sequence and obeys In(m/n) = 1

nIm.
The following results provide the foundations of our proof

and show that the MMSE and MI functions asymptotically
satisfy the same constraints as the replica prediction.

Theorem 4. Under Assumptions 1 and 2, the sequence of
MMSE functions Mn(δ) obeys

lim
n→∞

∫ T

0

∣∣∣∣Mn(δ)−mmseX

(
δ

1 +Mn(δ)

)∣∣∣∣dδ = 0

for all T ∈ R+.

Theorem 5. Under Assumptions 1 and 2, the sequencesMn(δ)
and I ′n(δ) obey

lim
n→∞

∫ T

0

∣∣∣∣I ′n(δ)− 1

2
log(1 +Mn(δ))

∣∣∣∣dδ = 0

for all T ∈ R+.

Theorem 6. Under Assumptions 1 and 2, the sequence of
mutual information functions In(δ) satisfies, for all δ > 2,

|In(δ)− IX(δ)| ≤ 1

δ − 2
.

III. KEY STEPS IN THE PROOF

Due to space constraints, we are only able to provide an
overview of some of the main ideas. An extended version of
the paper will contain the full details [30]. In the following,
we use C to denote an absolute constant and CB to denote a
number that depends on B but is independent of the all other
problem parameters. The Euclidean norm is denoted by ‖ · ‖.

A. Proof Sketch of Theorem 4

We use a reparameterization argument based on applying
an orthogonal transformation to the measurements that zeros
out all but one entry in the first column of the measurement
matrix; the details of this argument can be found in [31]. To
establish the asymptotic convergence, we use an approach that
is similar to the one outlined below for Theorem 5.

B. Proof Sketch of Theorem 5

The centered measurement Ȳm+1 is defined to be the
difference between a new measurement and its conditional
expectation given the previous data:

Ȳm+1 , Ym+1 − E
[
Ym+1 | Y m, Am+1

]
.

By the linearity of expectation, the centered measurement can
also be viewed as a noisy linear projection of the error:

Ȳm+1 = 〈Am+1, X
n − E[Xn | Y m, Am]〉+Wm+1. (6)

In this expression, the measurement vector Am+1 and noise
Wm+1 are Gaussian and independent of everything else.
Consequently, the distribution of the centered measurement
can be expressed as a Gaussian scale mixture with

PȲm+1|Xn,Ym,Am = N (0, 1 + Em),

where Em = 1
n‖X

n − E[Xn | Y m, Am]‖2 is the squared error.
Moreover, the variance satisfies the identity

Var(Ȳm+1) = 1 +Mn. (7)

At this point, the key question for our analysis is the extent
to which the (random) conditional distribution of Ȳm+1 given
(Y m, Am+1) can be approximated by a Gaussian distribution
with same mean and variance as Ȳm+1. The non-Gaussianness
is measured by the expected KL divergence and is defined as

∆m , E
[
DKL

(
PȲm+1|Ym,Am+1

∥∥∥N (0,Var(Ȳm+1))
)]
.

Combining (5) and (7) with the fact that the KL divergence with
respect to a Gaussian distribution is equal to the difference
in differential entropies [32], the non-Gaussianness can be
expressed as a function of the MMSE and the MI difference:

∆m =
1

2
log(1 +Mm)− I ′m.



This identity shows that the integral relationship between
mutual information and MMSE in Theorem 5 can be stated
equivalently in terms of the non-Gaussianness of the centered
measurements. Furthermore, it also shows that a phase transi-
tion occurs if and only if the conditional distribution of new
measurements is highly non-Gaussian.

One of the key steps in our proof is the following result,
which shows that the non-Gaussianness converges to zero
almost everywhere in the limit.

Lemma 7. Under Assumptions 1 and 2, the non-Gaussianness
of the centered measurements satisfies, for all δ ∈ (0,∞),

lim
n→∞

1

n

dδne∑
m=1

∆m = 0

The first step in our proof of Lemma 7 is to condition on
the posterior variance Vm , E[Em | Y m, Am], which is the
conditional expectation of the squared error. This allows us to
decompose the non-Gaussianness as follows:

∆m = E
[
DKL

(
PȲm+1|Ym,Am+1

∥∥∥N (0, 1 + Vm)
)]

+
1

2
E
[
log

(
1 +Mm

1 + Vm

)]
, (8)

where the first term on the right measures the non-Gaussianness
with respect to a Gaussian approximation that depends on
(Y m, Am) and the second term measures the deviation of the
posterior variance. Our approach to bounding these terms is
described in the following subsections.

C. Conditional CLT for new measurements

A necessary condition for first term on the right-hand
side of (8) to be small is that the conditional variance of
the centered measurement given (Y m, Am+1) is close to the
posterior variance Vm, and thus does not depend strongly on
the measurement vector Am+1. In light of (6), this is possible
only if the error corresponding to the conditional expectation
is nearly isotropic.

In order to bound this term, we use the following two
results. The first result shows that certain properties of the
error distribution can be bounded in terms of the second order
MI difference. The second result shows that these properties
are sufficient to bound the non-Gaussianness.

Lemma 8. Under Assumptions 1 and 2, the posterior variance
and the posterior covariance matrix satisfy

E[|Em − Vm|] ≤ CB · |I ′′m|
1
4

1

n
E[‖Cov(Xn | Y m, Am)‖F ] ≤ CB · |I ′′m|

1
4 .

Lemma 9 (Conditional CLT for Random Projections [33]).
Let U be an n-dimensional random vector with mean zero and
E
[
‖U‖4

]
≤ n2B. Consider the noisy random projection

Y = 〈A,U〉+W,

where A is an n-dimensional Gaussian vector with mean zero
and covariance n−1In and W ∼ N (0, 1). Then, the expected
KL divergence between the random conditional distribution
PY |A and the Gaussian distribution with the same mean and
variance as PY satisfies

EA
[
DKL

(
PY |A

∥∥N (0,Var(Y ))
)]

≤ CB ·
∣∣ 1
n‖Cov(U)‖F + 1

nE
[∣∣‖U‖2−E[‖U‖2]∣∣]∣∣ 49 .

Using Lemmas 8 and 9, it can be shown that

E
[
DKL

(
PȲm+1|Ym,Am+1

∥∥∥N (0, 1 + Vm)
)]
≤ CB · |I ′′m|

1
9 .

(9)

This inequality shows that the non-Gaussianness of the centered
measurement with respect to N (0, 1 + Vm) converges to zero
everywhere that the MI sequence is smooth, i.e. everywhere
except phase transitions.

D. Concentration of Posterior Variance

The second term on the right-hand side of (8) is nonnegative
and measures the deviation of the posterior variance from its
expectation. In order to bound this term, we focus on the
variance of the instantaneous mutual information, which is the
random variable defined by

ı(Xn;Y m | Am)

, log

(
fYm|Xn,Ym,Am(Y m | Xn, Y m, Am)

fYm|Am(Y m | Am)

)
.

Note that the expected value of ı(Xn;Y m | Am) is equal to
the mutual information Im.

Lemma 10. Under Assumptions 1 and 2, the variance of the
instantaneous mutual information satisfies

Var(ı(Xn;Y m | Am)) ≤ CB ·
(

1 +
m

n

)2

n.

Using Lemmas 8, 9 and 10 as well as further smoothness
properties of the posterior variance, it can eventually be shown
that, for all δ ∈ (0,∞),

1

n

bδnc∑
m=1

E
[
log

(
1 +Mm

1 + Vm

)]
≤ CB · (1 + δ3)n−

1
27 . (10)

At a high level, the proof of this inequality requires relating
the expected increase in the instantaneous mutual information
associated with a new measurement to a function of the
posterior variance. Combining (8), (9) and (10) leads to
Lemma 7.

E. Proof Sketch of Theorem 1

The setting for this proof is the set of uniformly-bounded
non-increasing functions from R+ to R+. It is well-known that
these functions are continuous almost everywhere (e.g., except
for a countable set of jump discontinuities) [34]. Two such
functions are called equivalent if they are equal at all points of
continuity. Let D be the set of equivalence classes induced by
this equivalence relation. For negative arguments, we extend
f ∈ D to f̃ : R→ R+ using the rule f̃(x) = f(0) for x < 0.
The following metric turns D into a metric space.

Definition 4. Adapting the Lévy metric [35] to D gives

dL(f, g) , inf
{
ε > 0

∣∣∣ g(x+ ε)− ε ≤ f(x)

≤ g(x− ε) + ε, ∀x ∈ R
}
.

Let D0 ⊂ D be the subset that also satisfies the upper bound
f(x) ≤ B/(x− 2) for x ≥ 3. One can analyze D0 based on
its close connection to tight families of cumulative distribution
functions [35].



Lemma 11. Consider the sequences Mn(δ) and I ′n(δ) in the
compact metric space (D0, dL). For any limit point of these
sequences, there is a g ∈ G and a subsequence n(i) such that

Mn(i)(δ)
dL→ g(δ)

I ′n(i)(δ)
dL→ 1

2
log(1 + g(δ)).

Sketch of Proof: First, we use Theorem 4 to show that
any limit point of any subsequence of Mn(δ) must satisfy (3)
in Definition 3. Next, we use Theorems 4 and 6 to show that
any limit point of any subsequence of Mn(δ) must satisfy (4)
in Definition 3. Since G is defined by (3) and (4), it follows
that any limit point of any subsequence must lie in G.

The proof of Theorem 1 is completed by first applying
Lemma 11. Then, the single-crossing property is combined
with Lemma 2 to show that the limiting g ∈ G must equal the
replica prediction almost everywhere. Finally, for a sequence
in a compact metric space, if all subsequences have the same
limit point, then the sequence must converge to that limit point.

IV. CONCLUSION

In this paper, we present a rigorous derivation of the
fundamental limits of compressed sensing for i.i.d. signal
distributions and i.i.d. Gaussian measurement matrices. We
show that the limiting MI and MMSE are equal to the values
predicted by the replica method from statistical physics. This
resolves a well-known open problem.
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[15] M. Mézard and A. Montanari, Information, physics, and computation.
Oxford University Press, 2009.

[16] R. Muller, “Channel capacity and minimum probability of error in large
dual antenna array systems with binary modulation,” IEEE Trans. Signal
Process., vol. 51, pp. 2821–2828, Nov. 2003.

[17] A. Montanari and D. Tse, “Analysis of belief propagation for non-linear
problems: The example of CDMA (or: How to prove Tanaka’s formula),”
in Proc. IEEE Inform. Theory Workshop, (Punta del Este, Uruguay),
pp. 160–164, 2006.

[18] D. Baron, S. Sarvotham, and R. G. Baraniuk, “Bayesian compressive
sensing via belief propagation,” IEEE Trans. Signal Process., vol. 58,
no. 1, pp. 269–280, 2010.

[19] S. Kudekar and H. D. Pfister, “The effect of spatial coupling on
compressive sensing,” in Proc. Annual Allerton Conf. on Commun.,
Control, and Comp., (Monticello, IL), 2010.
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