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Abstract—Recent work on Approximate Message Passing al-
gorithms in compressed sensing focuses on ‘ideal’ algorithms
which at each iteration face a subproblem of recovering an
unknown sparse signal in Gaussian white noise. The noise level
in each subproblem changes from iteration to iteration in a way
that depends on the underlying signal (which we don’t know!).
For such algorithms to be used in practice, it seems we need
an estimator that achieves the MMSE when the noise level is
unknown. In this paper we solve this problem using convex
optimization, Stein Unbiased Risk Estimates and Huber Splines.

I. INTRODUCTION

Recent work in Compressed Sensing (CS) [1], [2] employ-
ing the Approximate Message Passing (AMP) framework, dis-
cussed certain optimal algorithms for CS that iteratively solve
a certain Sparse Signal + Gaussian White Noise problem. The
algorithms in those papers repeatedly must solve subproblems
with observed data

Yi = Xi + Zi, i = 1, . . . , n (1)

where Zi iid N(0, σ2) and Xi iid FX , and the (Zi) are
independent of the (Xi). The goal is to estimate X = (Xi)
from the data Y = (Yi) with the smallest possible MSE. The
minimum MSE estimator is of course the conditional expec-
tation E{X|Y}. Of course, in a pure theoretical treatment
there is no difficulty in simply assuming that one can compute
the expectation; however, Compressed Sensing is intended for
applications in which the underlying X is associated with a
naturally occurring signal, is not under our control, and has
a distribution FX which cannot be assumed to be known. In
fact even σ2 depends on FX and cannot ordinarily be assumed
known in realistic applications.

In this note we propose a data-driven procedure having the
ability to deliver MMSE-level performance without knowing
FX or σ2.

To measure performance of a procedure, we say that (X,Y )
are a future realization of (1) if the pair is independent of all
training data Y and if X ∼ FX , while FY |X = N(X,σ2).
The predictive Bayes Risk PMSE∗(X,Y ) is then

PMSE∗(X,Y ) = E
[
(X − E{X|Y })2

]
.

The performance of a data-driven procedure η̂n(·;Y),
where Y denotes the training data, is measured by

PMSE(η̂n, X, Y ) = E
[
(X − η̂n(Y)})2

]
. The performance

question we posed above becomes: can one achieve

PMSE(η̂n, X, Y ) ≈ PMSE∗(X,Y )?

Our proposed procedure arises from a connection between
Bayesian inference and Robust statistics dating back to [3],
[4]. Exploiting ideas from [5], [6] we propose a local minimax
procedure η̂∗n, that for certain sequences (δn) and (αn) that
we describe explicitly, and which tend to zero with increasing
n,

Pr
{

PMSE(η∗n, X, Y ) ≥ PMSE∗(X,Y ) + δn
}
< αn. (2)

In words, we obtain theoretical guarantees on the near-
Bayesian performance of a fully empirical rule.

Our proposal is based on optimization over neighborhoods
of the empirical distribution, seeking the most stable decision
rule for shrinking Y towards X . Our rule can be written in
the ‘Tweedie-Rule’ form:

η∗n(Y ) = Y + (σ∗n)2
d

dy
log(f∗n(Y )),

where both the density estimate f∗n and the scale estimate σ∗n
are based on convex optimization; the density estimate is a
least-informative Huber Spline. This proposal gives a conser-
vative method of shrinkage; for example, it automatically has
a limited translation property: for large values of future data
Y , it translates by at most a data-derived constant. The rule
has property (2).

In the literature of Mathematical Statistics, several papers
consider a related problem when σ is known. To discuss them,
recall that in the model (1) we have Tweedie’s formula ( [7],
[8])

E{Xi|Yi = y} = y + σ2 d

dy
log(fY (y)), (3)

where fY = d
dyFY (y) is the marginal density of Y . Tweedie’s

formula says that, from observations of Y alone, and perfect
knowledge of FY and of σ, we can compute E{X|Y } without
using FX explicitly. Zhang [9], [10], Brown and Greenshtein
[11] combine this formula with classical Kernel Density Esti-
mation, while Jiang and Zhang [12] combine this formula with
(computationally intractable) maximum likelihood estimation.
The approach we develop is based on the idea that many
Tweedie rules could be consistent with the training data Y,



but some might be very weird or unstable. In our approach,
we obtain a rule which is guaranteed to be stable; in fact
we seek the Tweedie rule which is optimally robust among
all those rules which are consistent with the data. Our style of
analysis is based on the Stein Risk Function and minimization
of Fisher information using convex optimization. Our approach
also solves the σ-unknown problem, and a full analysis, not
presented here, shows that it works without any modification
when the errors Z are non-Gaussian, but are asymptotically
Gaussian in the sense of Stein’s method for proving limit
theorems. The previous statistical work explicitly needs exact
Gaussianity and exact knowledge of σ2, whereas our proposal
needs neither. In this short announcement, we are only able to
describe the framework and construct the estimator; a fuller
analysis will be presented in a journal article.

Recent work in the compressed sensing literature has also
considered adaptive estimation over certain parametric classes
of distributions. Vila and Schniter [13] and Krzakala et al.
[14] propose techniques combining the AMP framework with
expectation maximization (EM), and Kamilov et al. [15] pro-
pose a generalization that uses maximum likelihood estimation
within each EM iteration.

II. THE CONSTRUCTION: σ2 KNOWN

A. Stein Risk Functional

Suppose we have a proposed nonlinear estimator η(y) :
R 7→ R. Define the corresponding ‘score’ function ψ : R 7→
R by ψ(y) = y − η(y); for a cdf G, define the Stein’s Risk
functional (SRF)

SRF(ψ,G, σ) = σ2 − 2σ2EGψ
′(Y ) + EGψ

2(Y )

where EGH(Y ) =
∫
H(y)dG(y). By Stein [16] we have that,

when Y and X are independent, Y = X +Z, Z ∼ N(0, σ2),
and ψ(y) = y − η(y)

E(η(Y )−X)2 = SRF(ψ, FY , σ
2).

Our approach will be to use empirical data to design a score
function which is near optimal for underlying distributions
which are near the empirical CDF.

We make a few standard remarks. Let η∗Y (y) = E{X|Y =
y}; then the optimal MSE aka Bayes Risk is:

PMSE∗(X,Y ) = inf
η
E(η(Y )−X)2

= E(η∗Y (Y )−X)2 = σ2 · (1− σ2I(FY ))

where I(F ) =
∫

(f ′/f)2fdy is the Fisher Information for
location [17]. In relation to the SRF, we have that for ψ∗(y) =
y − η∗Y (y):

PMSE∗(X,Y ) = SRF(ψ∗, FY , σ
2) = inf

ψ
SRF(ψ,FY , σ

2).

B. Local Minimax Theorem

We now robustify the notion of PMSE using tools from
Robust statistics [5], [6]. Given a central CDF F0, define the
Kolmogorov-Smirnov neighborhood of F0 of radius κ > 0 by

F(κ;F0) = {G : |G− F0|KS ≤ κ},

where | · |KS denotes the KS distance:

|F −G|KS = sup
t
|F (t)−G(t)|.

Consider the local minimax problem

(PF0,κ,σ) inf
ψ

sup
G∈F(κ;F0)

SRF(ψ,G, σ2)

Lemma II.1. SRF(ψ,G, σ2) is convex quadratic in ψ and
affine in G. The collection of CDF’s in the neighborhood
F(κ;F0) is convex and vaguely compact. Hence for fixed σ,
the Huber minimax theorem applies. The minimax problem
has a saddlepoint in pure strategies. There is a pair (ψ∗κ, F

∗
κ )

such that

SRF(ψ∗κ, G, σ
2) ≤ SRF(ψ∗κ, F

∗
κ , σ

2) ≤ SRF(ψ, F ∗κ , σ
2).

The pair can be characterized as follows: F ∗κ is the least-
informative distribution in the KS-neighborhood

F ∗κ = arg min
F(κ;F0)

I(G), (4)

and ψ∗κ,σ is proportional to its Fisher score function for
location:

ψκ∗,σ = −σ2 · d
dy

log(f∗κ(y)). (5)

Remarks
• The problem of minimizing Fisher Information over a KS

neighborhood has been studied before, in robust statistics;
see [5], [18]. The case where F0 = N(0, 1) is detailed
in [19].

• While σ appears in the problem statement, and indeed
the solution ψκ∗,σ depends on σ, this dependence is
very simple: as the final display, (5) reveals, all the
solutions ψκ∗,σ are proportional to a single fixed function
d
dy log(f∗κ(y)).

• The same type of lemma can be shown for the sub
neighborhood

G(κ;F0, σ) = {G : G = Φσ ? H & |G− F0|KS ≤ κ}.

Using this subneighborhood would give tighter bounds
in everything that follows, and be more ‘intrinsic’ to
the structure of our problem, because it is only for
distributions FY ∈ G(κ;F0, σ) that SRF has a valid
interpretation as giving the Bayes MSE. Outside this
subneighborhood, SRF can simply be viewed as a regu-
larization of the Bayes MSE, that extends the Bayes MSE
to CDF’s where the standard assumptions (1) fail.
We don’t focus on this subneighborhood because it
renders the optimization problem more complicated. For
example, the solution of the minimax problem over the
neighborhood G(κ;F0, σ) would not depend so simply
on sigma as in the problem we do study.

Denote the value of the minimax problem (PF0,κ,σ) by

M(F0, κ) = M(F0, κ;σ) = V al(PF0,κ,σ)



The triangle inequality for | · |KS implies the basic monotonic-
ity

F(κ1;F1) ⊂ F(κ0;F0) =⇒M(F1, κ1, σ) ≤M(F0, κ0, σ).

M(F0, κ;σ) provides an upper bound on the PMSE∗

over the neighborhood1 G(κ;F0, σ) More importantly, it pro-
vides an upper bound on the PMSE of the shrinkage rule
η∗κ,σ(y) = y − ψ2

κ,σ(y). Indeed, let FY ∈ G(κ;F0, σ), and
let (F ∗κ,σ, ψ

∗
κ,σ, η

∗
κ,σ) result from the minimax result above.

Applying the Saddlepoint relation:

PMSE∗(X,Y ) = SRF(ψ∗Y , FY , σ)

≤ SRF(ψ∗κ,σ, FY , σ)

= PMSE(η∗κ,σ, X, Y )

≤ SRF(ψ∗κ, Fκ∗,σ, σ)

= M(F0, κ;σ).

Hence the Bayes Risk at FY is smaller than the minimax
PMSE over any neighborhood of Y ; but it is not much smaller.
Arguments from Section 3 will prove:

Lemma II.2. Let FY be the distribution function of a random
variable Y formed according to the standard model (1). The
Bayes Risk and the Bayes Rule are the limiting solutions of the
local minimax problem as the neighborhood size κ shrinks to
zero:

lim
κ→0

M(FY , κ) = PMSE∗(X,Y ),

and
lim
κ→0

η∗κ(y) = η∗Y (y) in L2(FY ).

In short, our local minimax problem gives a regularization of
the notion of Bayes risk. Unlike Bayes risk, it is defined on all
CDF’s in a suitable neighborhood of a CDF where the Bayes
risk is defined.

C. Least-Informative Tweedie Rule

Let Fn denote the empirical distribution of the entries in Y
and consider the optimization problem

(FIFn,κ) min{I(F ) : |F − Fn|KS ≤ κ}. (6)

The case κ = 0 of (FIFn,κ) asks for the distribution with
minimal Fisher information interpolating the empirical CDF,
and has been studied by Huber [20]; the solution CDF is a
so-called Huber Spline, having a density obeying a certain
differential equation and interpolating Fn at (Y(i), i/n). The
general case κ > 0 inherits these features, i.e. it is again a
Huber spline.

Lemma II.3. For each κ > 0, the solution of (FIFn,κ) exists,
is unique, and is obtainable by solving an n-dimensional
convex optimization problem.

1The least upper bound would be obtained from the analogous minimax
problem defined in terms of G(κ;F0, σ); in contrast M(F0, κ;σ) is the least
upper bound on the optimal SRF over F(κ;F0, σ); but the SRF does not
have the PMSE interpretation over F(κ;F0, σ)\G(κ;F0, σ).

Choose a ‘failure probability’ αn > 2−n; we can find a
value κn = κn,αn

so that

Pr{|Fn − FY |KS ≥ κn} ≤ αn.

By the distribution-free character of the KS distance, κn does
not depend on FY .

Let F ∗n = F ∗n,κn
denote the solution of (6) with κ = κn,

let ψ∗n(y) = ψ∗(y;Fn, κn) = −σ2 · ( ddy log f∗n(y)) denote the
corresponding score function and η∗n(y) = y−ψ∗n(y) the cor-
responding shrinker. These can be described more explicitly.
The density f∗n has the property that d2

dy2

√
f∗n is piecewise

constant, with knots at the points of the sample CDF; and
the displacement function ψ∗n is a continuous function, made
by splining together some simple rational functions. One can
show that in the extreme tails the displacement function is
constant, i.e. it does not oscillate wildly.

D. Consistency of the Local Minimax procedure

We propose the random procedure η∗n(y) be used as an
empirical Tweedie’s formula. How does its PMSE behave?

In effect, η∗n is the result of applying Lemma II.1 to the
problem (PFn,κn,σ). By the minimax theorem, Lemma II.1,
we have the random upper bound

PMSE(η∗n, X, Y ) ≤M(Fn, |Fn − FY |KS).

On the other hand the triangle inequality for KS distance gives
the random inclusion

F(Fn, |Fn − FY |KS) ⊂ F(FY , 2|Fn − FY |KS).

Hence

M(Fn, |Fn − FY |KS) ≤M(FY , 2|Fn − FY |KS).

Summarizing:

Lemma II.4. Let (Yi) and (Xi) obey the standard assump-
tions. Then the MSE of the random procedure η∗n applied to
a future realization (X,Y ) obeys:

{|FY−Fn|KS ≤ κn} =⇒ {PMSE(η∗n, X, Y ) ≤M(FY , 2κn)}

In short, if Fn is not too far from its sampling parent FY
the random procedure we proposed has MSE controlled by the
regularized Bayes risk M(FY , 2κn). In view of Lemma II.2
this regularized Bayes risk is close to the Bayes risk.

We now choose αn = n−M for some M � 0. This cor-
responds to κn ∼ C

√
log(n)
n . It follows that M(FY , 2κn) =

PMSE∗(X,Y )(1 + o(1)). We have

Corollary II.1. (Consistency). Choose κn = C
√

log(n)
n ,

independently of FY .

P

{
1 ≤ PMSE(η∗n, X, Y )

PMSE∗(X,Y )
≤ (1 + o(1))

}
→ 1, n→∞.

This proves our initial goal (2).



III. CONSTRUCTION: CASE σ2 UNKNOWN, BUT X SPARSE

In case σ2 is unknown, we have the problem of identifiabil-
ity. If FX contains a normal component, FX = F0 ?Φτ , then
we have FY = FX ? Φσ = F0 ? Φ√τ2+σ2 . Not knowing the
true noise level, we can’t decide empirically between σ and√
σ2 + τ2.

A. The largest normal component

We can identify the largest normal component of FY ; define
the functional

σ+(F ) = sup{s > 0 : ∃(s,H) : F = H ? Φs}.

In the previous example, the functional σ+ is (at least) σ2+τ2;
it could be larger still, if F0 has a normal component.
σ+ is an example of a discontinuous functional about which

we can in general make only one-sided inference. For an in-
depth discussion of one-sided inference, see [21].

Lemma III.1. σ+ is upper semicontinuous for weak conver-
gence of CDF’s.

Define the nonnegative quantity

σ+(κ;F0) = sup{s > 0 : |G− F0| ≤ κ;G = Φs ? H};

this gives the largest value of σ consistent with being nearby
F0, i.e. within KS distance κ.

Lemma III.2. The largest normal component σ+ is estimable
from observations of Y . Indeed, the estimator

σ̂+
n = σ+(κn;Fn),

where κn = C
√

log(n)
n , is consistent for σ+(FY ):

σ̂+
n →a.s. σ

+(FY ), n→∞.

Proof. We have

P{|Fn − FY |KS ≥ κn} → 0, n→∞,

and the bracketing relationship

{|Fn − FY |KS ≤ κn}
=⇒ {σ+

FY
≤ σ+(κn;Fn) ≤ σ+(2κn;FY )}.

Uppersemicontinuity gives

σ+(2κn;FY )→ σ+
FY
, κn → 0;

combining these displays proves the claim.

B. Identifiability of σ2 under Sparsity

In the main application we consider, the distribution of X
obeys a sparsity constraint:

P{X = 0} ≥ (1− ε). (7)

This allows σ, and not only σ+, to be identifiable.

Lemma III.3. Under assumption (7), then FY has a unique
normal component; i.e. there is only one value σ for which

there exists a representation FY = Φσ ? FX , with FX a CDF
having positive mass at 0. In particular σ = σ+

FY
.

Lemma III.4. Suppose that H0({0}) ≥ 1− ε with ε < 1 and
F0 = Φσ0

? H0, then

σ+(κ;F0)→ σ0,

as κ→ 0.

Note that it is not necessary to know ε ∈ (0, 1) in order to
get the benefits of identifiability and consistency; they accrue
to the estimator σ̂+

n regardless.

IV. THE GENERAL METHOD

The proposed procedure is outlined as follows:

• Neighborhood Size. For C > 0, let κn = C
√

log(n)
n .

• Local Minimax Shape. Let f∗n be the density of the
distribution F ∗n solving the problem of minimizing Fisher
Information over a KS neighborhood of Fn of radius κn.
Specifically, define the problem

(Shapeκ,Fn
) min{I(F ) : |F − Fn|KS ≤ κ},

where Fn is the empirical distribution, and let f∗n be the
solution of (Shapeκn,Fn

).
• Largest Normal Component. Let σ̂n denote the estimated

largest normal component, i.e. the σ solving

sup{σ : ∃(H,σ)&|Fn − Φσ ? H| ≤ κn}.

• Quantitatively Robust Tweedie’s Rule.

η̂∗n(y) = y − (σ̂n)2
d

dy
log(f∗n(y)).

Note that, in the proposed procedure:

• It is not necessary to specify σ.
• It is not necessary to specify the sparsity ε.
• The minimax shape is a Huber spline [20].
• Both steps, as explained below, can be implemented using

standard convex optimization software. The minimax
shape problem is a finite-dimensional convex optimiza-
tion problem. The Largest Normal Component problem
is approximable by a finite-dimensional convex optimiza-
tion problem.

Theorem IV.1. Suppose that X obeys the sparsity constraint
(7); but we do not know the value of ε. We have, for explicitly
describable sequences δn and αn both tending to zero,

P{PMSE(η̂∗n, X, Y ) = PMSE∗(X,Y ) + δn} ≤ αn,

where αn → 0.

• Here αn is universal and does not depend on the distri-
bution of (X,Y ). We can make αn go to zero at any
desired polynomial rate, by enlarging the constant C in
the definition of κn.



• Here we may take

δn = M(2κn, FY , σ
2)− PMSE∗(X,Y )

+
[
2|σ+(2κn, FY )2 − σ2|×

(1 + (σ2 + σ+(2κn, FY )2)I(FY ))
]
.

Proof of Theorem IV.1. Let F ∗n denote the least-favorable
distribution achieving the minimum Fisher information over
the neighborhood {G : |Fn − G|KS ≤ κn}. On the event
{|F − Fn|KS ≤ κn}, we have

PMSE(ψ̂∗n, X, Y ) = SRF(ψ̂∗n, FY , σ̂n
2
)

≤ SRF(ψ̂∗n, F
∗
n , σ̂n

2
)

≤ SRF(ψ∗n, F
∗
n , σ

2)

+ |σ̂n2 − σ2| · (1 + (σ2 + σ̂n
2
)I(F ∗n))

≤M(2κn, FY , σ
2)

+
[
|σ+(2κn, FY )2 − σ2|×

(1 + (σ2 + σ+(2κn, FY )2)I(FY ))
]
,

where we used Lemma IV.1 below, taking G = F ∗n , and
we make a distinction between ψ̂∗n, the score function with
estimated scale and ψ∗n the score function with scale perfectly
known.

On the same event, we have

PMSE(ψ̂∗n, X, Y ) = SRF(ψ̂∗n, FY , σ̂n
2
)

≥ SRF(ψσ̂n,Y , FY , σ̂n
2
)

≥ SRF(ψσ,Y , FY , σ
2)

− |σ̂n2 − σ2| · (1 + (σ2 + σ̂n
2
)I(FY ))

≥ PMSE∗(X,Y )

−
[
|σ+(2κn, FY )2 − σ2|×

(1 + (σ2 + σ+(2κn, FY )2)I(FY ))
]
,

where we used Lemma 4.1 below, with G = FY , and we
make a distinction between ψY,σ̂ , the score function based on
the true underlying FY but estimated scale σ̂, and ψY,σ, the
score function with both FY and scale σ perfectly known.

Combining these displays

|PMSE(ψ̂∗n, X, Y )− PMSE∗(X,Y )| ≤ δn.

Finally, the probability of the event’s complement is bounded
by

P{|Fn − FY |KS ≥ κn} ≤ αn.

Lemma IV.1. Let σ1 6= σ0. Then with G a CDF and ψG,σ
the score function ψG,σ = −σ2 d

dy log(g(y)), we have

|SRF(ψG,σ1 , G, σ
2
1)− SRF(ψG,σ0 , G, σ

2
0)|

≤ |σ2
1 − σ2

0 | · (1 + (σ2
0 + σ2

1)I(G)).
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