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Our Goals

I Broad class of network models (beyond symmetric models)

I Multivariate measures of performance

I Exact expressions for asymptotic performance

I Explore computational gaps

Paper on arxiv
https://arxiv.org/abs/1907.02496
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https://arxiv.org/abs/1907.02496


The ‘Bayes optimal’ setting

Assume joint distribution on (X,G) where

I G is adjacency matrix of simple graph with n vertices

I X = (X1, . . . , Xn) contains vertex labels

How much do we learn?

P (X | G) versus P (X)

I(X;G) = E
[
log

P (X,G)

P (X)P (G)

]
How well can we recover labels?

X̂ verus X
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A network with three similar communities
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A network with three similar communities
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Recent literature on detection / recovery thresholds

Incomplete list:

I A. Decelle, F. Krzakala, C. Moore, and L. Zdeborová, 2011

I E. Mossel, J. Neeman, and A. Sly, 2014

I Deshpande, E. Abbe, and A. Montanari, 2015

I J. Barbier, M. Dia, N. Macris, F. Krzakala, T. Lesieur, and L. Zdeborová, 2016

I F. Krzakala, J. Xu, L. Zdeborová, 2016

I J. Banks, C. Moore, J. Neeman, and P. Netrapalli, 2017

I E. Abbe and C. Sandon, 2017

I F. Caltagirone, M. Lelarge and L. Miolane, 2017

I F. Ricci-Tersenghi, G. Semerjian, and L. Zdeborová, 2018
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Parameterization of symmetric SBM

Vertex labels X1, . . . , Xn are i.i.d. uniform over k communities.

Without loss of generality, labels can be represented as using k
equidistant points in (k − 1)-dimensional Euclidean space:

k = 2 k = 3 k = 4

Normalize such that E[Xi] = 0 and Cov(Xi) = I, and hence

X>i Xj =

{
k − 1, Xi = Xj

−1, Xi 6= Xj
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Parameterization of symmetric SBM

Entries of adjacency matrix are conditionally independent:

Gij ∼ Bernoulli

(
d

n
+
r
√
d(1− d/n)

n
X>i Xj

)
, i < j

I d is the expected degree of each node
I r characterizes “community structure”

I r = 0 =⇒ no dependence
I r > 0 =⇒ assortative
I r < 0 =⇒ disassortative

10 / 32



Two-community SBM as n, d→∞ [Deshpande et al. 2015]

0 1
0

r2

4 log 2

signal strength r2

1
nI(X;G)

0 1
0

1
1

n2
E
[
‖XX> − E

[
XX>|G

]
‖2F
]

r2

4
log 2

signal strength r2

MMSE of
pairwise

interactions
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Where do these formulas come from?

12 / 32



The signal-plus-noise model

Yi ∼ N (Xi, s
−1I), i = 1, . . . , n

where s > 0 is the signal-to-noise ratio.

low SNR high SNR

Mutual information and MMSE functions (can approximate numerically)

IX(s) = I(X1;Y1)

mX(s) = E
[
‖X1 − E[X1 | Y1]‖2

]
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Theorem (Deshpande et al. 2015)

Assume k = 2 communities. Let s∗ ≥ 0 be global minimizer of

IX(s) +
1

4

(
r − s

r

)2

Then, MMSE of pairwise interactions satisfies

1

n2
E
[∥∥∥XX> − E

[
XX> | G

]∥∥∥2

F

]
= 1− (s∗)2

r4
+ on,d(1),

Furthermore

inf
X̂(·)

E
[

min
π∈{+1,−1}

1

n

∥∥∥X − πX̂(G)
∥∥∥2
]
≤ m(s∗) + on,d(1),

where the minimum over π resolves label invariance problem.
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A degree-balance network with three communities
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Parameterization of degree-balanced SBM

Vertex labels X1, . . . , Xn are i.i.d. over k communities with

p = (p1, . . . , pk)

Represent labels using k points in (k − 1) dimensions normalized to zero
mean and identity covariance:

p = (1/3, 1/3, 1/3) p = (0.1, 0.3, 0.6)
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Parameterization of degree-balanced SBM

Entries of adjacency matrix are conditionally independent:

Gij ∼ Bernoulli

(
d

n
+

√
d(1− d/n)

n
X>i RXj

)
, i < j

I d is the expected degree of each vertex
I R is a symmetric matrix that characterizes “community structure”

I R = 0 =⇒ no dependence
I R � 0 =⇒ assortative
I R ≺ 0 =⇒ disassortative
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Multivariate performance metric

MMSE(X | G) =
1

n

n∑
i=1

E
[
(Xi − E[Xi | G])(Xi − E[Xi | G])>

]

Data processing inequality + normalization of vertex labels:

0 � MMSE(X | G) � Ik−1

Trace corresponds to usual (scalar) MMSE

tr(MMSE(X | G)) =
1

n
E
[
‖X − E[X | G]‖2

]
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The signal-plus-noise model with matrix SNR

Yi ∼ N (Xi, S
−1I), i = 1, . . . , n

where S is positive semidefinite signal-to-noise ratio matrix.

Mutual information and MMSE functions (can approximate numerically)

IX(S) = I(X1;Y1)

MX(S) = E
[
(X1 − E[X1 | Y1])(X1 − E[X1 | Y1])>

]
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Theorem (R., Mayya, Volfovsky, 2019)

Assume that R is definite and let S∗ be the global minimizer of

IX(S) +
1

4
tr
(
(R−R−1S)2

)
.

Then, the MMSE matrix satisfies1

MMSE(X | G) �MX(S∗) + on,d(1),

where on,d(1) denotes a symmetric matrix that converges to zero as
n, d→∞.

1after resolving label invariances
21 / 32



Comparison of theoretical and empirical results

p = (1/3, 1/3, 1/3) p = (0.6, 0.3, 0.1)

Bound on tr(MMSE(X | G)) (contour lines) and empirical MSE of
belief propagation (heat map) with n = 105, average degree d = 30.
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Express MMSE as gradient of mutual information

Signal-plus-noise problem (in matrix notation)

Y︸︷︷︸
n×`

= X︸︷︷︸
n×`

S1/2︸︷︷︸
`×`

+ Gaussian noise︸ ︷︷ ︸
n×`

By Matrix I-MMSE relation [R. Pfister, Dytso 2018],

MMSE(X | G) =
2

n
∇SI(X;G,Y )

∣∣∣
S=0

Holds for any joint distribution on (X,G)!

Goal: lim
n→∞

1

n
I(X;G,Y ), S � 0
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Channel universality

Comparison between SBM and noisy matrix estimation

G ∼ Bernoulli

(
d

n
+

√
d(1− d/n)

n
XRX>

)

Z =

√
t

n
XRXT + Gaussian noise

Theorem (R., Mayya, Volfovsky, 2019)

If t = 1, then

lim
n,d→∞

1

n
|I(X;G,Y )− I(X;Y ,Z)| = 0

Generalizes prior work [Deshpande et al. 2015], [Krzakala et al. 2016]
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Interpolation via mutual information

Y = XS1/2 + Gaussian noise

Z =

√
t

n
XRXT + Gaussian noise

Define interpolating function I : Sd+ × [0,∞)→ [0,∞)

I(S, t) =
1

n
I(X;Y ,Z)

I t = 0 is signal-plus-noise model:

I(S, 0) =
1

n
I(X;Y )

I t = 1 is desired goal (by channel universality):

I(S, 1) =
1

n
I(X;G,Y ) + on,d(1)
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Estimation inequality for gradients

By I-MMSE relation,

∇SI(S, t) =
1

2
MMSE(X | Y ,Z)

∇tI(S, t) =
1

4

1

n2
E
[∥∥∥XRX> − E

[
XRX> | G

]∥∥∥2
]

Rearranging terms + Jensen’s inequality yields

∇tI(S, t) ≤ 1

4
g
(
2∇SI(S, t)

)
,

where g : Sd+ → [0,∞) is given by

g(U) =
1

n2
tr
(
E
[(
RXTX

)2])− tr

((
R

(
1

n
E
[
XXT

]
− U

))2
)
.
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Information inequality via duality
Conjugate function

J (U, t) = sup
S�0

{
I(S, t)− 1

2
〈S,U〉

}
Dual variable U corresponds to MMSE matrix

U = ∇SI(S∗, t) ⇐⇒ J (U, t) = I(S∗, t)− 1

2
〈S∗, U〉

By envelope theorem + inequality for gradients

∇tJ (U, t) = ∇tI(S∗, t) ≤ 1

4
g(∇SI(S∗, t)) =

1

4
g(U)

Integrating gives simple upper bound:

J (U, 1) ≤ J (U, 0) +
1

4
g(U)
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Information inequality via duality (cont.)

For any joint distribution on (X,G),

I(S, 1) = inf
U�0

{
J (U, 1) +

1

2
〈S,U〉

}
I(·, 1) is concave

≤ inf
U�0

{
J (U, 0) +

1

4
g(U) +

1

2
〈S,U〉

}
from gradient inq.

= inf
U�0

inf
∆�0

{
J (U, 0) +

1

4
h(∆) +

1

2
〈S+∆, U〉

}
h conjugate to g

= inf
∆�0

{
I(S + ∆, 0) +

1

4
h(∆)

}

.

If rows of X are IID with E
[
X1X

>
1

]
= I, then

I(S, 0) = IX(S), h(∆) = tr
(
(R−R−1∆)2

)
+ on(1)
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Final steps in proof

We showed that for all S � 0,

lim sup
n,d→∞

1

n
I(X;G,Y ) ≤ inf

∆�0

{
IX(S + ∆, 0) +

1

4
tr
(
(R−R−1∆)2

)}

Matching lower bound is much more difficult! We use matrix estimation
result of Lelarge, Miolane 2018 to show inequality is tight for S = 0.

lim
n,d→∞

1

n
I(X;G) = inf

∆�0

{
IX(∆, 0) +

1

4
tr
(
(R−R−1∆)2

)}

Comparing these expressions gives asymptotic upper bound on the
gradient of the mutual information, which is the MMSE matrix.

30 / 32



Final steps in proof

We showed that for all S � 0,

lim sup
n,d→∞

1

n
I(X;G,Y ) ≤ inf

∆�0

{
IX(S + ∆, 0) +

1

4
tr
(
(R−R−1∆)2

)}

Matching lower bound is much more difficult! We use matrix estimation
result of Lelarge, Miolane 2018 to show inequality is tight for S = 0.

lim
n,d→∞

1

n
I(X;G) = inf

∆�0

{
IX(∆, 0) +

1

4
tr
(
(R−R−1∆)2

)}

Comparing these expressions gives asymptotic upper bound on the
gradient of the mutual information, which is the MMSE matrix.

30 / 32



Final steps in proof

We showed that for all S � 0,

lim sup
n,d→∞

1

n
I(X;G,Y ) ≤ inf

∆�0

{
IX(S + ∆, 0) +

1

4
tr
(
(R−R−1∆)2

)}

Matching lower bound is much more difficult! We use matrix estimation
result of Lelarge, Miolane 2018 to show inequality is tight for S = 0.

lim
n,d→∞

1

n
I(X;G) = inf

∆�0

{
IX(∆, 0) +

1

4
tr
(
(R−R−1∆)2

)}

Comparing these expressions gives asymptotic upper bound on the
gradient of the mutual information, which is the MMSE matrix.

30 / 32



Table of Contents

Information Theory and Inference

Symmetric SBM

Degree-Balanced SBM

Key steps in proof

Conclusion

31 / 32



Conclusion

Contributions

I Study broad class of network models beyond the symmetric SBM.

I Characterize asymptotic performance via MMSE matrix.

I Novel interpolation method.

I Explore computation gap in asymmetric networks.

Future directions

I Bridge gaps in theory / statistics / applied network inference

I Use geometric insight to inform methodology

I Covariate information and other types of community structure.

Paper on arxiv
https://arxiv.org/abs/1907.02496

32 / 32

https://arxiv.org/abs/1907.02496


Conclusion

Contributions

I Study broad class of network models beyond the symmetric SBM.

I Characterize asymptotic performance via MMSE matrix.

I Novel interpolation method.

I Explore computation gap in asymmetric networks.

Future directions

I Bridge gaps in theory / statistics / applied network inference

I Use geometric insight to inform methodology

I Covariate information and other types of community structure.

Paper on arxiv
https://arxiv.org/abs/1907.02496

32 / 32

https://arxiv.org/abs/1907.02496

	Information Theory and Inference
	Symmetric SBM
	Degree-Balanced SBM
	Key steps in proof
	Conclusion

