
Quantifying Uncertainty in Variable Selection with
Arbitrary Matrices

Willem van den Boom∗, David Dunson∗, and Galen Reeves∗†
∗Department of Statistical Science, Duke University

†Department of Electrical and Computer Engineering, Duke University

Abstract—Probabilistically quantifying uncertainty in param-
eters, predictions and decisions is a crucial component of broad
scientific and engineering applications. This is however difficult if
the number of parameters far exceeds the sample size. Although
there are currently many methods which have guarantees for
problems characterized by large random matrices, there is often
a gap between theory and practice when it comes to measures
of statistical significance for matrices encountered in real-world
applications. This paper proposes a scalable framework that
utilizes state-of-the-art methods to provide approximations to
the marginal posterior distributions. This framework is used
to approximate marginal posterior inclusion probabilities for
Bayesian variable selection.

I. INTRODUCTION

This paper considers the problem of recovering an unknown
p-dimensional parameter vector β from a set of n noisy linear
measurements of the form

y = Xβ + ε, ε ∼ N (0, σ2In), (1)

where X is a fixed n× p matrix of features and ε is additive
white Gaussian noise with variance σ2. This problem arises
throughout science and engineering and has been studied
extensively within compressed sensing and statistics [1]. The
problem of variable selection, also known as support recovery,
is to determine which entries of β are nonzero [2]–[4]. This
problem is particularly challenging in the high-dimensional
setting where p is large and much greater than n, since
evaluating all possible subsets of the support is computationally
intractable.

A great deal of recent work has focused on providing
statistical guarantees for high-dimensional inference. One line
of work has studied approximate message passing (AMP)
algorithms [5]–[7], which provide posterior approximations
under a postulated prior. Another line of work has studied
the statistical properties of optimization-based methods, such
as lasso and other M-estimators, and used these to derive
confidence regions [8]–[12]. A remarkable feature of all of
these methods is that, for certain large random matrices, their
performance can be characterized rigorously and precisely.
Moreover, empirical studies also suggest that many of the
theoretical guarantees also apply more broadly to certain types
of structured matrix construction [13]. At this point, the key
challenge is to understand the extent to which these ideas can
be applied to the types of feature matrices that one frequently
encounters in statistical applications, which often have high
degrees of collinearity and non-uniformity.

The goal of this paper is to introduce a framework for
marginal posterior approximation that harnesses the power of
existing methods for high-dimensional inference while being
less restrictive about the types of feature matrices that can
be used. For each entry of the parameter vector, the quality
of approximation is assessed in terms of a single number,
which measures the influence of the noise and the other
parameters. This characterization provides a clean comparison
of existing methods, which allows one to select the method
which is most appropriate for a given matrix. Moreover, it
can be used to accurately predict functionals of the prior
and approximated posterior distributions, such as the receiver
operating characteristic (ROC).

A. The Bayesian model

For the purposes of this paper we assume throughout that
the parameter vector β is drawn according to a known iid prior,

p(β) =

p∏
j=1

p(βj). (2)

Under this prior, the joint posterior is difficult to visualize and
interpret, and one routinely bases inferences on summaries of
marginal posterior distributions for univariate functionals of the
parameters. The marginal posterior distribution of coefficient
βj is obtained by marginalizing out the other coefficients β(−j)
and can be stated as

p(βj |y) ∝
∫

exp
(
− 1

2σ2 ‖y −Xβ‖2
)
p(β)dβ(−j).

This expression is challenging to compute in general since it
requires evaluating a high-dimensional integral.

Section II introduces our framework for approximating
marginal posterior distributions. This framework consists of
two stages. First, a rotation is applied to the data to separate
the parameter of interest from the other parameters. Then,
the posterior distribution of a scalar auxiliary variable is
approximated using a Gaussian distribution. The problem of
computing the mean and variance of the approximation can
be attacked using existing methods such as AMP, lasso and
Bayesian compressed regression [14].

Section III shows how our framework can be used for the
problem of Bayesian variable selection, where the goal is to
compute the posterior inclusion probabilities p(βj 6= 0|y), j =
1, 2, . . . , p. These inclusion probabilities provide summaries of
the weight of evidence in favor of the respective hypotheses



H1j : βj 6= 0 representing that the jth feature plays a role in
predicting the response.

B. Relation to previous work

A number of recent papers have focused on statistical
guarantees corresponding to specific recovery methods. For
instance, [8] shows how confidence intervals can be obtained
for various M-estimators while [9]–[12] do the same for
test statistics derived from additional processing of the lasso
solution. The theory for these confidence intervals depends
on the consistency of the estimator used and asymptotic
convergence rates of certain normal approximations in the
limit as n and p scale to infiinty. The behavior for large iid
subgaussian random feature matrices is determined precisely
in [11].

There has also been a great deal of interest in AMP
based algorithms, which are based on Gaussian and quadratic
approximations to loopy belief propagation. The statistical
behavior of AMP can be characterized theoretically for large
iid subgaussian random feature matrices [15], and empirical
results suggest that the theory holds more generally for certain
types of nonrandom matrices [13]. One of the challenges with
AMP, however, is that for arbitrary matrices convergence of the
AMP iterations may require dampening [16] or serial updates
[17]. Recent work has shown that stable points of the AMP
iterations correspond to stationary points of an approximation to
the Bethe free energy [16] and developed optimization methods
which attempt to minimize the approximate Bethe free energy
directly [18]. While this leads to methods with guaranteed
convergence, the statistical behavior of the solution is not fully
understood for general matrices.

Modeling the data in a Bayesian fashion provides an
alternative. It forms a natural framework to evaluate statistical
evidence via the posterior for general feature matrices. The
posterior can however be computationally intractable, especially
in the high-dimensional case. So even though many Bayesian
variable selection methods exist [19], they typically rely on
Monte Carlo sampling for inference [2], [20], [21], which does
not scale well with the number of candidate predictors. This
has motivated a rich literature on better samplers [22], [23] but
since the dimensionality of the posterior grows exponentially
in p, these are still not scalable to high-dimensional problems.

Our approximation framework focuses on computing the
one-dimensional posterior distribution of a single entry of the
parameter vector. The other parameters are viewed as “nuisance”
parameters and their combined influence is summarized in
terms of a signal auxiliary variable, which is approximated
as Gaussian. The key contribution of this paper is to describe
a simple two-stage procedure where one first estimates the
mean and variance of the auxiliary variable, and then combines
these estimates with the prior to produce the final posterior
approximation. This two-stage procedure has the property that
estimates for the mean and variance in the first-stage are
statistically independent of the parameter of interest.

In comparison to many of the classical Bayesian approxi-
mation methods, our framework can handle posteriors which

are multimodal and posteriors which are discrete-continuous
mixtures. This is not possible using methods based on direct
normal-type approximations or Laplace’s method [24]–[26].

II. GENERAL APPROXIMATION FRAMEWORK

This section describes our general framework for approxi-
mating posterior marginal distributions. The key assumption
we make is that the entries of β are independent, and hence
the prior distribution can be decomposed as in (2).

A. Decomposition of posterior marginal
The first step is to introduce rotated data, which focuses the

influence of a parameter of interest into a single response. We
will assume henceforth that we are interested in the posterior
marginal distribution of the jth entry of β.

Let q1 = xj/‖xj‖ be a unit vector in the direction of the jth
column of X and let Q2 be an n× (n− 1) matrix chosen so
that Q = [q1|Q2] is orthonormal, i.e., QQT = In. The rotated
data are defined as

ỹ = QT2 y, z = qT1 y.

To characterize the distribution on (ỹ, z), we define

s = ‖xj‖2, z0 = qT1 X(−j)β(−j), X̃ = QT2X(−j),

where β(−j) denotes the p−1 vector with the jth entry removed
and X(−j) the n×(p−1) matrix with the jth column removed.
Following the rotational invariance of the Gaussian distribution,
the distribution of the rotated data is expressed as

ỹ|β ∼ N
(
X̃β(−j), σ

2In−1

)
, (3)

z|β ∼ N (
√
sβj + z0, σ

2). (4)

The important property of this decomposition is that ỹ and βj
are independent.

Next, we express the posterior marginal distribution of βj
in terms of the rotated data. Using the fact that there is a
one-to-one mapping from y to (ỹ, z) and Bayes’ rule yields

p(βj |y) = p(βj |ỹ, z) =
p(βj , z|ỹ)
p(z|ỹ)

.

Furthermore, the numerator can be expressed as

p(βj , z|ỹ) =
∫∫

p(βj , z|z0, ỹ)p(z0|ỹ)dz0

=

∫∫
p(βj , z|z0)p(z0|ỹ)dz0,

where the last step follows from the fact that the pair (βj , z) is
conditionally independent of ỹ given z0. The first probability
inside the integral corresponds to a one-dimensional regression
problem and is given by

p(βj , z|z0) = p(z|βj , z0)p(βj).
By (4), the first probability on the right-hand side is a Gaussian.
The second probability is simply the prior distribution of βj .
Putting everything together yields

p(βj |y) ∝
∫∫

exp
(
− 1

2σ2 (z −
√
sβj − z0)2

)
p(βj)

× p(z0|ỹ)dz0. (5)



B. The approximation step

The main challenge in using the formulation of the previous
section to efficiently approximate the marginal posterior of
βj is that computation of the distribution function p(z0|ỹ) is
intractable. The key step in our approach is approximating this
distribution using a Gaussian distribution.

We approximate the distribution of z0|ỹ using a Gaussian
distribution of the form

p(z0|ỹ) ≈
1√
2πτ2

exp

(
− (z0 − µ)2

2τ2

)
, (6)

where the mean µ and variance τ2 are functions of ỹ. These
can be estimated by applying existing methods to the linear
regression problem defined by the rotated data (ỹ, X̃). Plugging
the approximation in (6) back into (5) yields the approximation
on p(βj |y).

As a heuristic justification for the Gaussian approximation of
p(z0|ỹ), consider a setting in which the entries of the (p−1)×1
vector qT1 X(−j) are of roughly the same order. Then, the a priori
distribution of z0 is approximately Gaussian by the central limit
theorem for sums of independent variables. Provided that the
entries of β(−j) given ỹ are weakly correlated, it can then be
argued that the posterior distribution of z0 is also approximately
Gaussian. Using ideas from [15], this line of reasoning can
be made rigorous for iid random feature matrices with iid
subguassian entries. It is important to note that approximate
Gaussianity of the predictive distribution does not hold in the
setting where a small number of other columns of X are highly
collinear with xj .

III. BAYESIAN VARIABLE SELECTION

This section applies the approximation framework described
in Section II to the problem of variable selection. A common
model for sparse vectors is to consider a mixture distribution
of the form

βj
iid∼ (1− λ)δ0 + λN (0, σ2ψ), j = 1, . . . , p, (7)

where δ0 is a point mass at zero, N (0, σ2ψ) is a Gaussian
distribution, and λ ∈ (0, 1) is the prior inclusion probability.
This is known alternatively as the spike-and-slab prior or the
Bernoulli-Gaussian prior. Note that the scaling of the variance
of β by σ2 means the signal-to-noise ratio is controlled by ψ
and does not depend on the error variance.

The posterior distribution of β can be expressed as a
Gaussian mixture model. However, the number of mixtures
grows exponentially in p and thus direct computation is
infeasible for large p.

A. The approximation and its quality

The approximation described in Section II requires finding
the parameters µ and τ2 in the approximation of p(z0|ỹ)
from (6). Following the details outlined in [27], this can be
accomplished by running AMP on the rotated data. Alterna-
tively, following ideas given in [8], it is possible to obtain
approximations based on the lasso estimate.

To assess the quality of our approximations, we would ideally
like to compare the approximated and true posterior marginal
inclusion probabilities. Unfortunately, we are unable to make
such a comparison since direct computation of the posterior
marginal inclusion probabilities is computationally intractable
for problem sizes of interest.

As an alternative, we consider the empirical receiver oper-
ating characteristic (ROC) curves corresponding to different
methods of posterior approximation. These ROC curves allow
us to compare the performance of different methods on different
types of matrices. Moreover, if the curve of one method is
uniformly higher than that of another, then the first method
dominates the second, in the sense that it provides a strictly
better posterior approximation.

B. Simulation

We used numerical simulations to obtain empirical ROC
curves for posterior approximations made using our two-
stage framework using two different methods (AMP and
lasso) and two different types of matrices. In all cases,
(n, p) = (100, 200), the error variance was σ2 = 1, and the
parameter vector β was drawn according to a spike-and-slab
prior.

For the first simulation, the entries of X were drawn iid
zero-mean Gaussian with variance 1/n and the variance and
prior inclusion probability of β were set to (ψ, λ) = (50, 0.2).
For the second simulation, the columns of X were set equal to
x1 = ξ1 and xj = 0.7xj−1+

√
1− 0.72ξj , j = 2, . . . , p where

ξj
iid∼ N (0, In) such that the correlation between columns i

and j was given by 0.7|i−j|. The variance and prior inclusion
probability of β were set to (ψ, λ) = (2.5, 0.01). Only the first
predictor β1 was used for construction of the ROC. The results
are illustrated in Figure 1.

The results of the first simulation show that AMP outper-
forms lasso for the uncorrelated matrix. This is consistent with
the asymptotic theory for large iid matrices which predicts that
AMP will provide more accurate estimates of the mean and
variance of the posterior distribution of the auxiliary variable
z0. Interestingly, though, the second simulation shows that for
a feature matrix with highly correlated columns, lasso can
provide a better posterior approximation. This is consistent
with the observation that lasso is less sensitive to the properties
of the matrix.
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[1] P. Bühlmann and S. van de Geer, Statistics for High-Dimensional Data.
Springer, 2011.



0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

False positive rate

Tr
ue

 p
os

iti
ve

 ra
te

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

False positive rate

Tr
ue

 p
os

iti
ve

 ra
te

Fig. 1. Empirical ROC curves for variable selection resulting from 4000 Monte Carlo trials with (n, p) = (100, 200). The results correspond to our two-stage
approximation framework using AMP (red) and lasso with regularization parameter ranging from 0.01 (black) to 100 (light gray). The left panel corresponds to
an iid Gaussian matrix and the right panel corresponds to a matrix drawn from a random ensemble with correlated columns.
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