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Abstract—Recovery of the support set (or sparsity pattern) of
a sparse vector from a small number of noisy linear projections
(or samples) is a “compressed sensing” problem that arises in
signal processing and statistics. Although many computationally
efficient recovery algorithms have been studied, the optimality
(or gap from optimality) of these algorithms is, in general,not
well understood. In this note, approximate support recovery
under a Gaussian prior is considered, and it is shown that
optimal estimation depends on the recovery metric in general. By
contrast, it is shown that in the SNR limits, there exist uniformly
near-optimal estimators, namely, the ML estimate in the high
SNR case, and a computationally trivial thresholding algorithm
in the low SNR case.

I. I NTRODUCTION

The task of support recovery is to determine which elements
of an unknown sparse vectorx ∈ R

n are non-zero based on a
set of noisy linear observationsy = Ax+w whereA ∈ R

m×n

is a known sampling matrix andw ∈ R
m is an unknown error

term. This problem, which is variously known as recovery
of the sparsity pattern or model selection, has been studied
extensively in the signal processing and statistics literature [1]–
[11]. In many cases of interest, the number of observationsm
is far less than the signal lengthn and henceA is not invertible.

In the special case where the measurements are uncorrupted
by noise, it is well known thatx can be recovered exactly
using usingℓ0 minimization provided that the sampling matrix
A obeys certain key properties. Although such recovery is
NP hard in general, it has been shown [12]–[14] that ifA
obeys a few additional properties, thenx can also be recovered
exactly using a polynomial time convex relaxation (linear
programming).

In the general setting, the analysis of recovery algorithmsis
more complex since performance depends on the assumptions
about the noise, the values of the non-zero signal elements,
and the recovery criteria. Although many recovery algorithms
have been shown to perform well in certain settings, it is often
not known if their performance can be improved significantly.
Furthermore, the fundamental tradeoff between performance
and computational complexity is poorly understood in general.

In this note, we consider approximate support recovery with
respect to Gaussian signal priors. Our analysis reveals key
insights about the computational complexity and universality
of optimal recovery in the high and low SNR regimes.

II. RESULTS

Given any vectorx ∈ R
n, the supports ⊂ {1, 2, · · · , n} is

the set of integers indexing the non-zero elements ofx. We
assume throughout that the sparsityk = |s| is known and that
any estimatês has sizek. The distortiond(ŝ, s) = 1−|ŝ∩s|/|s|
is used to measure the fraction of errors.

Proposition 1. Suppose that the supportS is distributed
uniformly over all subsets of sizek, the non-zero elements
{Xi}i∈S are i.i.d. N (0, P

1+P ), and the errors{Wi}m
i=1 are

i.i.d. N (0, 1
1+P ). Given any error fractionα ∈ [0, 1], the

probability thatd(ŝ(Y),S) > α is minimized by the estimate

ŝOPT(y; α, P ) = arg max
s

∑

s′ : d(s′,s)<α

e−
1
2

[

‖Σ−1/2

s
′

y‖2+log|Σ
s
′ |
]

whereΣs = 1
1+P · I + P

1+P · AsA
T
s .

In contrast to the estimatêsOPT, which depends on the
sparsityk, the error fractionα and the relative powerP , the
following two recovery algorithms depend only on the sparsity.

The nearest subspace(NS) estimate [4] corresponds to
the maximum likelihood estimate ofx and is given by the
combinatorial optimization problem

ŝNS(y) = argmin
s

‖Πsy‖ (1)

whereΠs = I − As

(

AT
s As

)−1
AT

s if AT
s As is invertible and

is equal to a matrix of zeros otherwise.
The thresholding(TH) estimate [10] amounts to identifying

the k largest elements of the vectorAT y ∈ R
n and can be

expressed as

ŝTH(y) = arg max
s

‖Asy‖2 − tr
(

AT
s As

)

. (2)

The following theorems show that the nearest subspace and
thresholding estimates correspond to the optimal estimate(for
any α) at high and low SNR respectively.

Theorem 1 (High SNR). Let A and y be fixed. IfŝNS(y) is
unique, then there existsPA,y < ∞ such that for allP > PA,y

and α ∈ [0, 1),

ŝOPT(y; α, P ) = ŝNS(y).

Theorem 2 (Low SNR). Let A and y be fixed. If,̂sTH(y) is
unique, then there existsPA,y > 0 such that for allP < PA,y

and α ∈ [0, 1),

ŝOPT(y; α, P ) = ŝTH(y)



2

One immediate consequence of Theorems 1 and 2 is that if
the joint distribution onS andY is given by the assumptions
of Proposition 1, and if each submatrixAs has a unique range
space of dimensionk, then for anyα ∈ [0, 1),

Pr
{

ŝOPT(Y; α, P ) = ŝNS(Y)
}

→ 1 as P → ∞, and

Pr
{

ŝOPT(Y; α, P ) = ŝTH(Y)
}

→ 1 as P → 0.

This convergence holds for any value ofα, thus showing
that universal estimators, irrespective of the value ofα, exist
in the SNR limits. However, therateat which this convergence
occurs can depend strongly on the value ofα, as the following
simple example illustrates.

Proposition 2. Suppose that the joint distribution on the
support S and samplesY is given by the assumptions of
Proposition 1, and thatn = 4, k = 2, m = 3 and

A =
1

2





−1 1 1 −1
1 −1 1 −1
1 1 −1 −1



 .

Then, asP → ∞

Pr
{

d
(

ŝOPT(Y; 1
2 , P ),S

)

> 1
2

}

= O
(

1
P

)

(3)

Pr
{

d
(

ŝOPT(Y; 0, P ),S
)

> 1
2

}

= Ω
(

1√
P

)

. (4)

III. D ISCUSSION

To understand the significance of the results in this paper,
we first consider the special case of exact recovery (i.e.
α = 0 for our recovery metric). In this setting, a great
deal of previous work [1]–[4], [10] has derived necessary
and sufficient conditions on scalings of the tuple(n, k, m) to
ensure reliable recovery in the high dimensional setting where
n → ∞. In particular, it has been shown that if the per-sample
SNR is a finite constant independent ofn, then thescaling
conditionsof the nearest subspace and thresholding estimators
are information-theoretically optimal. However, these scaling
conditions do not tell the whole story since the dependence
of the bounds on the SNR and the further assumptions about
the values of the non-zero elements ofx are absorbed in the
(typically unknown) constants of the bounds.

In comparison to the scaling results outlined above, The-
orems 1 and 2 in this paper show that, under a Gaussian
prior, the nearest subspace and thresholding estimates arenear-
optimal in their respective SNR settings. This convergenceis
non-asymptotic in the dimensions(n, k, m). At low SNR, this
result suggests that there is little improvement to be gained
using any algorithm other than the computationally simple
thresholding estimate. At high SNR, this result validates the
use of computationally efficient convex relaxations to the
nearest subspace algorithm such asBasis Pursuit[15] and
LASSO[16].

It is interesting to note that for exact recovery, the optimal
estimate under a Gaussian prior simplifies to

ŝOPT(y; 0, P ) = arg min
s

‖Σ−1/2
s′ y‖2 + log |Σs′ | ,

and thus the convergence shown by Theorems 1 and 2 is much
easier to prove than in the general case (i.e.α > 0). However,

to our knowledge, these connections between optimal estima-
tion and the nearest subspace and thresholding estimators have
not been addressed explicitly in previous work, even for exact
recovery.

In many practically inspired settings, however, exact recov-
ery is infeasible and approximate support recovery guarantees
are needed. For example, if the per-sample SNR and the
ratios k/n and m/n are finite constants independent ofn,
then any support estimator will have a constant fraction of
errors asn becomes large [17]. Parallel to the setting of exact
recovery, previous work [5]–[9] has focused on conditions
for asymptotically reliable approximate recovery. It has been
shown that if a fractionα > 0 of errors are allowed, then
the scaling conditions on(n, k, m) are fundamentally different
than in the exact recovery setting and are comparable to the
conditions needed for other recovery tasks such as estimation
of x with bounded mean squared error. Moreover, it also
has been shown that scaling conditions of the nearest sub-
space and the thresholding estimators are, again, information-
theoretically optimal.

Despite the insights given by the above scaling results, there
exists several important questions about optimal estimation
in in the approximate recovery setting. For example, are the
nearest subspace and thresholding estimates still near-optimal
(with respect to constants) in the SNR limits? Can significantly
better (i.e. more reliable) recovery be achieved by optimizing
for a targeted error fraction?

The results in this paper provide valuable insights about the
above questions. For example, the fact that Theorems 1 and 2
hold uniformly for allα shows that, under a Gaussian prior, the
nearest subspace and thresholding estimators are, indeed,near-
optimal in the SNR limits. However, the cautionary example
given in Proposition 2 illustrates that performance (in this
case, the probability that the fraction of errors exceedsα) may
depend significantly on whether or not the error boundα is
taken into account during estimation.

Another source of insight into approximate recovery is given
by recent results [17], [18] that are complementary in nature
to the results of this paper and consist of upper bounds (for the
nearest subspace and thresholding estimator) and information-
theoretic lower bounds on thesampling ratem/n needed
for asymptotically reliable recovery with respect to an error
fractionα. Unlike many of the previous scaling results, these
bounds: 1) apply for a variety of assumptions about the non-
zero signal elements; 2) are stated explicitly in terms of the
SNR, the ratiok/n and various key signal properties; and 3)
are shown to be relatively tight for a wide range of settings.

Figure 1 provides an illustration of the bounds discussed
above for a Gaussian signal prior. Specifically, the sampling
rate needed to ensure that the error fraction does not exceed
α = 0.1 is plotted as a function of the SNR. In this setting,
the asymptotic bounds reinforce the main results of this paper
and show the near-optimality of the nearest subspace and
thresholding estimates in the SNR limits. Interestingly, the
bounds also exhibit similar behavior for a variety of non-
Gaussian priors which suggests the properties studied in this
paper likely extend beyond the Gaussian setting.
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Fig. 1. Bounds on the asymptotic sampling rateρ = m/n and SNR needed
to recover 90% of the support (α = 0.1) when the non-zero signal elements
are Gausisan,k/n→ 10−4, and the sampling matrixA is constructed with
i.i.d. Gaussian elements.

IV. PROOFS

The following proofs require some additional notation. We
defineBα(s) = {s′ : d(s, s′) ≤ α) and useAs to denote the
m × k submatrix formed by the columns ofA indexed bys.
For a square matrixM we use|M | to denote the determinant.

A. Proof of Theorem 1

To begin, we define theintermediate(INT) estimate

ŝINT(y; α, P ) = argmax
s

∑

s′∈Bα(s)

e−
1

2

[

(1+P )‖Π
s
′y‖2+log|AT

s
′As

′ |
]

.

Then, we use the following two lemmas which show that the
optimal estimate and nearest subspace estimate both converge
to the intermediate estimate for largeP .

Lemma 1. Let A and y be fixed withm > k. Let α ∈ [0, 1)

be fixed. IfŝNS(y) is unique then there existsP (1)
A,y,α < ∞

such that for allP > P
(1)
A,y,α,

ŝNS(y) = ŝINT(y; α, P ).

Proof: To begin, it is convenient to define the polynomial

rs(x) =
∑

s′∈Bα(s)

cs′x
−d

s
′

where cs = |AT
s As|−1/2, and ds = 1

2‖Πsy‖2. Observe that
the intermediate estimate can be expressed as

ŝINT(y; α, P ) = argmax
s

rs

(

e(1+P )
)

.

Next, letN = |Bα(s)| and for1 < i ≤ N define

si = arg min
s∈Bα(s1)\∪i−1

j=1
sj

ds

where s1 = arg mins ds = ŝNS(y). Furthermore, define
Bi = {s1, s2, · · · , si} and observe thatBN = Bα(s1). Hence,

to prove the desired convergence, it sufficient to show that
Bα(s∗) = B|N | where

s∗ = lim
x→∞

argmax
s

rs(x)

We prove the above claim by induction: we first show that
B1 ⊂ Bα(s∗) and then show that for each1 < i ≤ N the fact
that Bi−1 ⊂ Bα(s∗) implies thatBi ⊆ Bα(s∗).

To prove the first step, suppose thats1 /∈ Bα(s∗). Then,

lim inf
x→∞

rs1(x)

rs∗(x)
> lim inf

x→∞
cs1 x−ds1

∑

s′∈Bα(s) cs′ x−d
s
′

= ∞

since, by definition,ds1 < ds for all s 6= s1. Hence, we have
shown by contradiction thats1 ∈ Bα(s∗).

To prove the general step, assume thatBi−1 ⊂ Bα(s∗) but
si /∈ Bα(s∗). Then,rs1(x) < rs∗(x) only if

csi x−dsi <
∑

s∈Bα(s∗)\Bi−1

cs′ x−d
s
′

However, by the definition ofsi,

lim inf
n→∞

csi x−dsi

∑

s∈Bα(s∗)\Bi−1
cs′ x−d

s
′

= ∞.

and hence we have shown by contradiction thatsi ∈ Bα(s).

Lemma 2. Let A and y be fixed withm > k. Let α ∈ [0, 1)

be fixed. If,ŝNS(y) is unique, then there existsP (2)
A,y,α < ∞

such that for allP < P
(2)
A,y,α,

ŝOPT(y; α, 1
1+P , P

1+P ) = ŝINT(y; α, P ).

Proof: To begin, define

fs(P ) = exp
{

− 1+P
2 ‖Πsy‖2 − 1

2 log
∣

∣AT
s As

∣

∣

}

,

gs(P ) = exp
{

− 1
2‖Σ−1/2

s y‖2 − 1
2 log |Σs|

}

and let s∗ = ŝNS(y). From the uniqueness of̂sNS(y) and
Lemma 1, there existsP (1)

A,y,α < ∞ such that for anyP (1)
A,y,α <

P < ∞ and anyu 6= s∗,
∑

s′∈Bα(s∗) fs′(P )
∑

s′∈Bα(u) fs′(P )
> 1

The above statement implies that

min
s∈Bα(s∗)\Bα(u)

‖Πsy‖ < min
s∈Bα(u)\Bα(s∗)

‖Πsy‖

and hence, for anyu 6= s∗,

lim
P→∞

∑

s′∈Bα(s∗)\Bα(u) fs′(P )
∑

s′∈Bα(u)\Bα(s∗) fs′(P )
= ∞. (5)

Now, to show the desired convergence, it is sufficient to
show that a similar statement holds withfs(P ) replaced by
gs(P ). In particular, note that for anyu 6= s,

∑

s′∈Bα(s∗) gs′(P )
∑

s′∈Bα(u) gs′(P )
> 1 (6)
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if an only if
∑

s′∈Bα(s∗)\Bα(u) gs′(P )
∑

s′∈Bα(u)\Bα(s∗) gs′(P )
> 1. (7)

To show that the above inequality occurs, define

∆(P ) = max
s

| log (fs(P )) − log (gs(P )) |

and observe that
∑

s′∈Bα(s∗)\Bα(u) gs′(P )
∑

s′∈Bα(u)\Bα(s∗) gs′(P )

≥
∑

s′∈Bα(s∗)\Bα(u) fs′(P )
∑

s′∈Bα(u)\Bα(s∗) fs′(P )
exp{−2∆(P )}. (8)

The convergence in (5) shows that the first term on the
right hand side of (8) becomes arbitrarily large asP → ∞.
In the following steps, we show that the second term remains
bounded away from zero. By the matrix inversion lemma,

Σ−1
s = (1 + P )

[

Im×m − As

(

1
P Ik×k + AT

s As

)−1
AT

s

]

.

Applying a Taylor expansion [19] shows that,
(

1
P Ik×k + AT

s As

)−1
=

(

AT
s As

)−1
+ O

(

1
P

) (

AT
s As

)−2

and hence

‖Σ−1/2
s y‖2 = (1 + P )‖Πsy‖2 + O

(

1+P
P

)

. (9)

Next, by Sylvester’s determinant theorem,

det (Σs) =
(

P
1+P

)m ∣

∣

1
P Im×m + AsA

T
s

∣

∣

=
(

P
1+P

)m ∣

∣

1
P Ik×k + AT

s As

∣

∣ ,

and applying a Taylor expansion [19] shows that
∣

∣

1
P Ik×k + AT

s As

∣

∣ =
∣

∣AT
s As

∣

∣ + O
(

1
P

)

. (10)

Combining (9) and (10) shows thatlim supP→∞ ∆(P ) is
finite. Thus, we have shown that forP large enough, the right
hand side of (8) will be greater than one which proves the
desired result.

To conclude the proof of Theorem 1, observe that it is
sufficient to to prove convergence uniformly for allα ∈
[0, 1) by applying Lemmas 1 and 2 to eachα in the finite
set A = {l/k : 0 ≤ l < k} and letting PA,y =

maxα∈A max(P
(1)
A,y,α, P

(2)
A,y,α).

B. Proof of Theorem 2

Define the exponents

Es(P ) = 1
2

[

− ‖Σ−1/2
s y‖2 − log |Σs|

+ (1 + P )‖y‖2 + m log(1 + P )
]

Es = 1
2

[

‖Asy‖2 − tr
(

AT
s As

) ]

.

and observe that the optimal estimate and the thresholding
estimate can be expressed as

ŝOPT(y; α, P ) = arg max
s

∑

s′∈Bα(s)

exp{Es′(P )}

ŝTH(y) = arg max
s

Es.

By the matrix inversion lemma,

Σ−1
s = (1 + P )

[

Im×m − PAs

(

Ik×k + PAT
s As

)−1
AT

s

]

.

Applying a Taylor expansion [19] shows that,

(

Ik×k + PAT
s As

)−1
= Ik×k + O

(

P
)

Ik×k

and hence

‖Σ−1/2
s y‖2 = (1 + P )‖y‖2 − P‖AT

s y‖2 + O(P 2). (11)

Next, by Sylvester’s determinant theorem,

det (Σs) =
(

1
1+P

)m ∣

∣Im×m + PAsA
T
s

∣

∣

=
(

1
1+P

)m ∣

∣Ik×k + PAT
s As

∣

∣ .

Applying a Taylor expansion [19] shows that

∣

∣Ik×k + PAT
s As

∣

∣ = 1 + P · tr
(

AT
s As

)

+ O
(

P 2
)

(12)

Combining (11) and (12) shows that for anys,

Es(P ) = PEs + O(P 2) as P → 0.

Thus, by the approximationexp{x} = 1+x+O(x2) asx → 0,

exp{Es(P )} = 1 + PEs + O(P 2) as P → 0. (13)

Using (13), the optimal estimate can be expressed as

ŝOPT(y; α, P ) = argmax
s

∑

s′∈Bα(s)

Es′ + δs(P )

where maxs |δs(P )| = O(1/P ) as P → 0. Hence, if the
estimate

ŝ∗ = arg max
s

∑

s′∈Bα(s)

Es′

is unique, we may conclude that there existsPA,y > 0 such
that for all P < PA,y,

ŝOPT(y; α, P ) = s∗.

To conclude the proof, we will show thats∗ = sTH(y) which
proves both the uniqueness ofs∗ and the desired convergence.
Observe thatEs can be decomposed as

∑

s′∈Bα(s)

2Es =
∑

s′∈Bα(s)

∑

i∈s′

[

(aT
i y)2 − ‖ai‖2

]

=

n
∑

i=1

Ni(s)
[

‖aiy‖2 − ‖ai‖2
]

(14)

where Ni(s) = |{s′ ∋ i : d(s, s′) ≤ α}| obeysNi(s) =
Nj(s) > Nl(s) for all i, j ∈ s and l /∈ s. Hence, the right
hand side of (14) is maximized whens corresponds to the
indices of thek largest values of(aT

i y)2−‖ai‖2. This proves
that s∗ = sTH(y) and thus concludes the proof.
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C. Proof of Proposition 2

To begin, it is convenient to enumerate the possible supports
as s1 = {1, 2}, s2 = {1, 3}, s3 = {1, 4}, s4 = {2, 3}, s5 =
{2, 4}, ands6 = {3, 4}. By the symmetry ofA,

Pr
{

d
(

ŝOPT(Y; α, P ),S
)

> 1
2

}

= Pr
{

d
(

ŝOPT(Y; α, P ),S
)

> 1
2

∣

∣S = si

}

for anysi. Thus, without loss of generality, we may condition
on the realizationS = s1.

Next, for each1 ≤ i ≤ 6, consider the singular decomposi-
tion Σsi = UT

i DiUi. It may be verifiedDi = D where

diag(D) =
[

P + 1, P/2 + 1, 1
]

.

Also, defineBi = D−1/2UT
i U1D

−1/2 andV = D−1/2UT
1 Y

and observe that‖ΣsiY‖ = ‖BiV‖ where the elements ofV
are i.i.d.N (0, 1).

We now prove the scaling (3). Using the above properties
and the definition of thêsOPT given in Proposition 1, the
probability of erroneous recovery can be bounded as

Pr
{

d
(

ŝOPT(Y; 1
2 , P ),S

)

> 1
2

}

= Pr
{

arg max
i

‖BiV‖ = 1
}

≤ Pr
{

‖B1V‖ > max
2≤i≤5

‖BiV‖
}

.

Clearly,B1 is equal to the identity matrix. LettingbT
i denote

the third row ofBi, it may be verified that

bT
2 = 1

2

[

−
√

P + 1
√

P + 2 1
]

bT
3 = 1

2

[

−
√

P + 1
√

P + 2 −1
]

bT
4 = 1

2

[ √
P + 1

√
P + 2 1

]

bT
5 = 1

2

[

−
√

P + 1 −
√

P + 2 1
]

.

Hence,

max
2≤i≤5

‖BiV‖2 ≥ max
2≤i≤5

(bT
i V)2

= 1
4

(√
P + 1|V1| +

√
P + 2|V2| + |V3|

)2

and thus

Pr
{

‖B1V‖ > max
2≤i≤5

‖B6V‖
}

< Pr
{

V 2
3 > P−4

4

(

V 2
1 + V 2

2

)}

.

Applying Lemma 3 completes the proof of (3).
Next, we bound the scaling (4). This time, the probability

of erroneous recovery is given by

Pr
{

d
(

ŝOPT(Y; 0, P ),S
)

> 1
2

}

= Pr
{

arg min
i

‖BiV‖ = 6
}

.

To lower bound the above probability, observe that

min
2≤i≤5

‖BiV‖2 ≥ min
2≤i≤5

(bT
i V)2

wherebT
i are defined as above. Also, it may be verified that

‖B6V‖2 = (P +1)V 2
1 +V 2

2 + 1
P+1V 2

3 . Hence, if we we define

E =
{

1
64PV 2

2 > V 2
3 > 4PV 2

1

}

.

then a bit of algebra shows that forP > 20,

E ⇒
{

‖B6V‖2 < V 2
2 +V 2

3

}

∩
{

min
1≤i≤5

‖BiV‖2 ≥ V 2
2 +V 2

3

}

,

and hencePr
{

argmini ‖BiV‖2 = 6
}

≥ Pr{E}. Using

Pr{E} > Pr
{

V 2
3 > 4PV 2

1

}

− Pr
{

V 2
3 > 1

128P (V 2
2 + V 2

3 )
}

.

and applying Lemma 3 completes the proof of (3).

Lemma 3. If Z1, Z2, Z3 are i.i.d. N (0, 1), then, asP → ∞,

Pr{Z2
1 > PZ2

2} = Θ(P−1/2)

Pr{Z2
1 > P (Z2

2 + Z2
3 )} = Θ(P−1)

Proof: The proof follows from Gaussian tail bounds.
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