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Abstract—Recovery of the support set (or sparsity pattern) of Il. RESULTS

a sparse vector from a small number of noisy linear projectios Given any vectorx € R”, the support c {1,2,--- ,n} is
(or samples) is a “compressed sensing” problem that arisesi Y . L bp o ’
signal processing and statistics. Although many computatnally ~the set of integers indexing the non-zero elements.ofVe

efficient recovery algorithms have been studied, the optinfdy ~assume throughout that the sparsity- |s| is known and that
(or gap from optimality) of these algorithms is, in general,not any estimaté has size:. The distortioni(s, s) = 1—|8Ns|/|s|

well understood. In this note, approximate support recovey s ysed to measure the fraction of errors.
under a Gaussian prior is considered, and it is shown that

optimal estimation depends on the recovery metric in genefaBy  Proposition 1. Suppose that the suppof is distributed

contrast, it is shown that in the SNR ||m|t5, there exist unibrmly uniform|y over all subsets of SiZb, the non-zero elements

near-optimal estimators, namely, the ML estimate in the hidp R ‘s P Am
SNR case, and a computationally trivial thresholding algoithm {Xi}ies are iid. N(O, 1+P)’ and the errors{W:}i2, are

in the low SNR case. ii.d. NV(0, =5). Given any error fractiona € [0,1], the
probability thatd(s(Y),S) > « is minimized by the estimate

1 —1/2_ 12 X
Soprly;a, P) =argmax 3 o3 I35y 1> +og|5, ]

I. INTRODUCTION * oid(ss)<a
_ _1 P T

The task of support recovery is to determine which eIemerY%/shereES =wr I Asds
of an unknown sparse vectarc R™ are non-zero based on a In contrast to the estimatéopr, Which depends on the
set of noisy linear observatiolys= Ax+w whered € R™x"  sparsityk, the error fractionn and the relative powepP, the
is a known sampling matrix anaét € R™ is an unknown error following two recovery algorithms depend only on the sggusi
term. This problem, which is variously known as recovery The nearest subspacgNS) estimate [4] corresponds to
of the sparsity pattern or model selection, has been studif§ maximum likelihood estimate of and is given by the
extensively in the signal processing and statistics litegg[1]— Ccombinatorial optimization problem
[11]. In many cases of interest, the number of observations
is far less than the signal lengthand hencel is not invertible.

In the special case where the measurements are uncorrupidreIl, = I — Aq (A;fAs)_lA;f if AT Ag is invertible and
by noise, it is well known thak can be recovered exactlyis equal to a matrix of zeros otherwise.
using using’y minimization provided that the sampling matrix Thethresholding(TH) estimate [10] amounts to identifying
A obeys certain key properties. Although such recovery iise k largest elements of the vectat’y € R™ and can be
NP hard in general, it has been shown [12]-[14] thatdif expressed as
obeys a few additional properties, therran also be recovered .
evatIy using a polynl?)m?al time convex relaxation (linear STH(Y) :alng”nlsa)(HAsy”2 —tr(AgAs). (2)
programming). The following theorems show that the nearest subspace and

In the general setting, the analysis of recovery algoritamsthresholding estimates correspond to the optimal estiiffiate
more complex since performance depends on the assumptiang«) at high and low SNR respectively.

about the noise, the values of the non-zero signal EIGmenIIﬁEOrem 1 (High SNR) Let 4 andy be fixed. Iféns(y) is
and the recovery criteria. Although many recovery algonigh unique, then there exisf8; , < oo such that for ;';\IIP =P,
have been shown to perform well in certain settings, it isroft and o e 0,1) Y Y

not known if their performance can be improved significantly

Furthermore, the fundamental tradeoff between performanc SopT(y; o, P) = $ns(y)-

and computational complexity is poorly understood in geher tpaqrem 2 (Low SNR) Let A andy be fixed. If gu(y) is
In this note, we consider approximate support recovery Witthique, then there exist8, , > 0 such that for allP < P,

respect to Gaussian signal priors. Our analysis reveals kgyd o e [0, 1) '

insights about the computational complexity and univéssal . .

of optimal recovery in the high and low SNR regimes. Sopt(y; @, P) = Stu(y)

Sns(y) = argmin [[Isy|| 1)



One immediate consequence of Theorems 1 and 2 is thatoifour knowledge, these connections between optimal estima
the joint distribution orS andY is given by the assumptionstion and the nearest subspace and thresholding estimaees h
of Proposition 1, and if each submatu has a unique range not been addressed explicitly in previous work, even foicexa
space of dimensiok, then for any« € [0, 1), recovery.

Pr {éopT(Y; a, P) = éNs(Y)} —~1 as P—oo, and In_ many practically inspirgd settings, however, exact veco
R R ery is infeasible and approximate support recovery guagant
Pr{sopr(Y; e, P) =stn(Y)} —1 as P —0. are needed. For example, if the per-sample SNR and the
This convergence holds for any value of thus showing ratios k/n and m/n are finite constants independent of
that universal estimators, irrespective of the valuexpexist then any support estimator will have a constant fraction of
in the SNR limits. However, theate at which this convergence €10rs as: becomes large [17]. Parallel to the setting of exact

occurs can depend strongly on the valuevofs the following recovery, previous work [5]-[9] has focused on conditions
simple example illustrates. for asymptotically reliable approximate recovery. It hasb

N o o shown that if a fractiorn > 0 of errors are allowed, then
Proposition 2. Suppose that the joint distribution on thene scaling conditions ofn, k, m) are fundamentally different
supportS and samplesY is given by the assumptions Ofihan in the exact recovery setting and are comparable to the
Proposition 1, and that = 4, k = 2, m = 3 and conditions needed for other recovery tasks such as estimati

-1 1 1 -1 of x with bounded mean squared error. Moreover, it also
A==-11 =1 1 =1l. has been shown that scaling conditions of the nearest sub-
1 1 -1 -1 space and the thresholding estimators are, again, infarmat
theoretically optimal.

Despite the insights given by the above scaling resultsethe
Pr{d(éopT(Y; 1.P),8) > %} =0(%) (38) exists several important questions about optimal estonati
in in the approximate recovery setting. For example, are the
Pr {d(§OPT(Y§ 0,P), S) > %} = Q(\/Lﬁ) (4)  nearest subspace and thresholding estimates still néianadp
(with respect to constants) in the SNR limits? Can signifigan
I1l. DISCUSSION better (i.e. more reliable) recovery be achieved by opiingiz

To understand the significance of the results in this papé®r @ targeted error fraction?
we first consider the special case of exact recovery (i.e.The results in this paper provide valuable insights abaait th
a = 0 for our recovery metric). In this setting, a greatibove questions. For example, the fact that Theorems 1 and 2
deal of previous work [1]-[4], [10] has derived necessaryold uniformly for alla shows that, under a Gaussian prior, the
and sufficient conditions on scalings of the tupte k,m) to nearest subspace and thresholding estimators are, inukad,
ensure reliable recovery in the high dimensional settingreh optimal in the SNR limits. However, the cautionary example
n — oo. In particular, it has been shown that if the per-sampfgiven in Proposition 2 illustrates that performance (insthi
SNR is a finite constant independent sof then thescaling case, the probability that the fraction of errors excegdsay
conditionsof the nearest subspace and thresholding estimatdepend significantly on whether or not the error bounds
are information-theoretically optimal. However, thesalisg taken into account during estimation.
conditions do not tell the whole story since the dependenceanother source of insight into approximate recovery is give
of the bounds on the SNR and the further assumptions abeytrecent results [17], [18] that are complementary in retur
the values of the non-zero elementsxofire absorbed in the to the results of this paper and consist of upper boundsléor t
(typically unknown) constants of the bounds. nearest subspace and thresholding estimator) and infimaat

In comparison to the scaling results outlined above, Thgheoretic lower bounds on thsampling ratem/n needed
orems 1 and 2 in this paper show that, under a GaussfaR asymptotically reliable recovery with respect to anoerr
prior, the nearest subspace and thresholding estimategare fraction «. Unlike many of the previous scaling results, these
optimal in their respective SNR settings. This convergaacepounds: 1) apply for a variety of assumptions about the non-
non-asymptotic in the dimensiotts, &, m). At low SNR, this zero signal elements; 2) are stated explicitly in terms ef th
result suggests that there is little improvement to be ghingNR, the ratiok /» and various key signal properties; and 3)
using any algorithm other than the computationally simplgre shown to be relatively tight for a wide range of settings.
thresholding estimate. At high SNR, this result validates t  rjore 1 provides an illustration of the bounds discussed

use of computationally efficient convex relaxations t0 thg,,ye for a Gaussian signal prior. Specifically, the sargplin
nearest subspace algorithm suchBasis Pursuit[15] and 46 needed to ensure that the error fraction does not exceed
LAS_SQ[16]' ) . «a = 0.1 is plotted as a function of the SNR. In this setting,

It is interesting to note that for exact recovery, the optimgne asymptotic bounds reinforce the main results of thipap
estimate under a Gaussian prior simplifies to and show the near-optimality of the nearest subspace and
1/2_ 112 thresholding estimates in the SNR limits. Interestinghg t

yl? +log|Se |, S . :

bounds also exhibit similar behavior for a variety of non-
and thus the convergence shown by Theorems 1 and 2 is m@zdussian priors which suggests the properties studiedisn th
easier to prove than in the general case (.ex 0). However, paper likely extend beyond the Gaussian setting.

Then, asP — oo

Sop1(y; 0, ) = argmin ||,



10 to prove the desired convergence, it sufficient to show that
) B.(s*) = B)n| Where
10 E
TH U s* = lim argmaxrs(x)
10t pper Bound [18] ] z—00 s
& We prove the above claim by induction: we first show that
K 10° 3 By C B,(s*) and then show that for eadh< i < N the fact
> that B;_; C B,(s*) implies thatB; C B,(s*).
29 1 To prove the first step, suppose that¢ B, (s*). Then,
IS
® , 2 —d
10 ¢ S1
) NS Upper Bound [18] i inf 72 @) g Cs, @ o
-3 T—oo TS* € T ZS/GBQ(S) CS, T <
10 ¢ E
| OPT Lower Bound [17] since, by definitior_ld_Sl < dg for all s # s;. Hence, we have
107 ‘ ‘ ‘ ‘ ‘ ‘ E shown by contradiction that; € B, (s*).
-40 -20 0 20 40 60 80 100 To prove the general step, assume tBat; C B,(s*) but
SNR (dB) s; ¢ Ba(s*). Then,rg, () < re-(z) only if
Fig. 1. Bounds on the asymptotic sampling rate- m/n and SNR needed —ds, —dg,
to recover 90% of the supportv(= 0.1) when the non-zero signal elements Cs; T % < Z Cs' T
are Gausisank/n — 104, and the sampling matrixi is constructed with SEB.(s*)\Bi—1
i.i.d. Gaussian elements. o
However, by the definition of;,
Ce, 2
IV. PROOFS lim inf Si — 00.

n—oo . ) Ca/ x*ds/

The following proofs require some additional notation. We ZSGB"(S NBi-y 75
define B,(s) = {s’ : d(s,s’) < a) and useA; to denote the and hence we have shown by contradiction #hat B,(s).
m x k submatrix formed by the columns of indexed bys. [ |

For a square matrid/ we use|M | to denote the determinant. . .
g 1] Lemma 2. Let A andy be fixed withm > k. Leta € 0,1

be fixed. If,5ns(y) is unique, then there existh)yﬂ <
A. Proof of Theorem 1 such that for allP < P2

Ay,
To begin, we define thintermediate(INT) estimate Y

SINT(y; i, P) = argmax Z e 2 [P I,y 1> +log| AT Ay ] )
® s’€Bq(s)
Then, we use the following two lemmas which show that the  fs(P) = exp {—5E | TLsy||> — 1 log |[AL A4},

optimal estimate and nearest subspace estimate both ver -
ptima e and n P GEVEr g (P) = exp {555 /2y |2 - Llog ||}
to the intermediate estimate for large

SopT(Y; @ 1955 7o) = SINT(Y; @, P).

Proof: To begin, define

Lemma 1. Let A andy be fixed withm > k. Leta € [0,1)
be fixed. IfSys(y) is unique then there exist@fﬁ;_’a <

such that for allP > p

and lets* = §ys(y). From the uniqueness @Ns(y; and
Lemma 1, there existé’xgl)y ., < oo such that for any{gly o <
P < oo and anyu # s*,

Ay,
ZS’GB (s*) fs'(P)
sns(y) = st (ys @, P). . > 1
o ] ] ] ZS/EBQ(U) fs’(P)
Proof: To begin, it is convenient to define the polynom|a.l|_he above statement implies that
_ e
rs(@) = Z s min ITsy || < min [Tyl
s’€Ba(s) S€Ba(5%)\Ba(u) s€Bq (u)\Ba(s%)
wherecs = |[ATA|71/2, andds = 1||Tlsy||>. Observe that and hence, for any # s*,
the intermediate estimate can be expressed as p
lm ¥R S (P ®)
ST (y; o, P) = arg maxrs (€(1+P)) . P—oo Zs’eBa(u)\Ba(s*) fs(P)
Next, let N = |Bu(s)| and forl < i < N define Now, to show the desired convergence, it is sufficient to
show that a similar statement holds with(P) replaced by
s; = arg min  ds gs(P). In particular, note that for anu # s,
sGBa(sl)\U;ﬁ;is]'
’ 5 !/ P
where's; = argmingds = $ns(y). Furthermore, define 2sren () 95 (P) >1 (6)

B; = {s1,s2,---,s;} and observe thaBy = B,(s1). Hence, Zs/eBa(u) 95 (P)



if an only if By the matrix inversion lemma,

Zs/eBa(s*)\Ba(u) 9s'(P)

-1
> 1. (7)) S7'=(1+P) |Luxm — PAs (Iyxi, + PATAS) 7~ AT
Do/ Bo (w)\ Ba(st) s’ (P) ( ) { x (Zix ) }
To show that the above inequality occurs, define Applying a Taylor expansion [19] shows that,
A(P) = msax|log (fS(P)) - 1Og (gs(P)) | (Ikxk + PAZ“AS)71 = Toxr + O(P)Ikxk

and observe that
ZS’EBQ(S*)\BQ(u) 95 (P)
2 s€Ba(u)\Ba(s*) 9 (P) 15512y = (14 P)lly|” = PIIAYy|* + O(P?).  (11)
- Y5 € Bu(s*)\ Ba(u) J5' (P)
T Y seBa(u\Ba(sh) f5 (P)
The convergence in (5) shows that the first term on the det (Zg) = (HLP)W [ Ixm + PASAL |
right hand side of (8) becomes arbitrarily large As— oc. )m ’Ikxk + PA;*FASI _

In the following steps, we show that the second term remains
bounded away from zero. By the matrix inversion lemma, applying a Taylor expansion [19] shows that

and hence

exp{—2A(P)}. (8) Next, by Sylvester's determinant theorem,

(=p

-1 _ - 1 T 4\~ 4T
s _(”P){Imxm As (plic + As As) As}' \Lxk + PAT A =14 P-tr(ATAs) + O(P?)  (12)

Applying a Taylor expansion [19] shows that,
(bl + ATA) ™ = (ATA) 7 1 O(}) (AT A)
and hence
1Z52y)1? = (1+ P)||sy|® + O(L). (9) Thus, by the approximatiasxp{z} = 1+2+0(2?) asz — 0,

Next, by Sylvester’s determinant theorem,

9 Combining (11) and (12) shows that for agy

Es(P) = PEs+O(P?*) as P —0.

exp{Fs(P)} =1+ PE;+O(P*) as P—0. (13)

det () = (£5) " [FLmxm + AsAJ]| . . |
_ (H—LP)m ‘%Ika + ASTAS| 7 Using (13), the optimal estimate can be expressed as
and applying a Taylor expansion [19] shows that Sop1(y; v, P) = argmax Z Es +5(P)
[P locn + AT A = [ATA[ +O(3). (10) #EBa(s)

Combining (9) and (10) shows thatmsup,_. A(P) is Where maxs|6s(P)] = O(1/P) as P — 0. Hence, if the
finite. Thus, we have shown that fét large enough, the right estimate
hand side of (8) will be greater than one which proves the »
desired result. 8" = argmax Z Ey
] s’€Bq(s)

To conclude the proof of Theorem 1, observe that it is . .
sufficient to to prove convergence uniformly for all € It?lz:tr}lc()]ruzlil ge:;ay conclude that there existgy > 0 such
[0,1) by applying Lemmas 1 and 2 to eachin the finite Ay

= . < i - S ’
set A {l/k(l) 0 @) I < k} and letting Pay Sopt(y;a, P) =s".
maXqgeA maX(PA,y,a’ A,y,a)'

To conclude the proof, we will show that = st (y) which

B. Proof of Theorem 2 proves both the uniquenesssfand the desired convergence.
Define the exponents Observe thatts can be decomposed as
— 1l o 2y)2 =
Es(P) = 5[~ 2%y — log ] Z 2F, = Z Z [(aiTy)2 — lail?]
+ (1 4+ P)||y||* + mlog(1 + P)} s'€Ba(s) §'€Ba(s) i€s'
T n
Es = 5[ Asyll* — tr(AL 4s) ]. =3 Ni(s) [layll? = flas?] (14)
and observe that the optimal estimate and the thresholding i=1
estimate can be expressed as where Ni(s) = [{s' 3 i : d(s,s) < a}| obeysN;(s) =
Sop1(y; o, P) = arg max Z exp{Es (P)} N;(s) > Ny(s) for all 4,5 € s and! ¢ s. Hence, the right
® SEBu(s) hand side of (14) is maximized when corresponds to the

indices of thek largest values ofa!'y)? — |a;||?. This proves

S = Es.
stH(y) = arg g Bs thats* = stu(y) and thus concludes the proof.



C. Proof of Proposition 2

To begin, it is convenient to enumerate the possible suppogt —.

ass; = {1,2}, so = {1,3}, s3 = {1,4}, sa = {2,3}, 85 =
{2,4}, andsg = {3,4}. By the symmetry of4,

Pr{d(sopr(Y; 0, P),8) >}
- Pr{d(éopT(Y;a,P), S) > ils = sz-}

Lemma 3.

for anys;. Thus, without loss of generality, we may condition
on the realizatior = s;.

Next, for eachl < i < 6, consider the singular decomposi-
tion X, = UL D,;U;. It may be verifiedD; = D where

diagD) = [P+1, P/2+1, 1].

Also, defineB; = D~Y?UU;D~'/? andV = D~'/2U]'Y
and observe thdtYs, Y| = || B; V| where the elements of
are i.i.d.N(0,1).

We now prove the scaling (3). Using the above properties
and the definition of theSppt given in Proposition 1, the
probability of erroneous recovery can be bounded as

Pr{d(sopr(Y; 3, P).8) >}

= Pr{argmaxHBiVH = 1}

< Pr{||B:V| > max ||B;V]}.
2<i<5

(1]
(2]

(3]

[4]
Clearly, B; is equal to the identity matrix. Letting? denote

the third row of B;, it may be verified that [5]

by =3 [-VP+1 VP+2 1]
bi =3 [-vVP+1 VP+2 -1 o
bi=3[ VP+1 VP+2 1] 1
bl =1[-VP+1 —-VP+2 1]. "
Hence, [9]
1BV 2 pyax (b V)* o

= LWVPTIV| + VP T 2Va| + [Val)’

and thus (11]

Pr{| B V| > Joax | BV} < Pr{Vi > EA (V2 +V5)}. "
Applying Lemma 3 completes the proof of (3).

Next, we bound the scaling (4). This time, the probabilitip]
of erroneous recovery is given by

Pr{d(éopT(Y;O,P),S) > %} - Pr{argmiinHBiVH - 6}. [14]

To lower bound the above probability, observe that [15]

min_||B;V||* > min (b} V)? [16]
2<i<5 2<i<5

whereb! are defined as above. Also, it may be verified thit”!
|BsV|? = (P+1)V2+VZ+ 5= V4. Hence, if we we define [18]

£ = {épvj > V2> 4PV12}. [19]

then a bit of algebra shows that fét > 20,

{1BaVI? < Vi+V2h 0 { min |IBVIP = Vi+V),

and hencePr{argmin; | B;V||* = 6} > Pr{&}. Using
Pr{€} > Pr{V{ > 4PV} — Pr{Vy >

2 P(VE+ V).

and applying Lemma 3 completes the proof of (3).

If Z1, 25, Z3 are i.i.d. N'(0, 1), then, asP — oo,
Pr{Z} > PZ2} = ©(P~1/?)
Pr{Z? > P(Z3+ Z3)} =0(P™ 1)

Proof: The proof follows from Gaussian tail bounds
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