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Abstract

The theory of compressed sensing shows that sparsity pattern (or support) of a
sparse signal can be recovered from a small number of appropriate linear projec-
tions (samples). Unfortunately, as soon as noise is added, the number of required
samples exceeds the full signal dimension, rendering compressed sensing ineffec-
tive. In recent work, we have shown that this can be fixed if a small distortion
is allowed in the signal recovery. The present paper extends our results to a
simplified estimator.

1 Introduction

Estimation of sparse vectors from a limited number of noisy measurements is a prob-
lem that arises in many areas such as compressive sensing, subset selection in linear
regression, graphical model selection, sparse approximation, and signal denoising. In
these problems, an unknown vector x = [x1, · · ·xn] is known a priori to be sparse in
the sense that it has a relatively small number of non-zero elements. However, the
locations and values of the non-zero elements are unknown and must be inferred from
a set of noisy linear projections (or samples) of the form

yi = 〈φi,x〉 + wi, for i = 1, · · · , m (1)

where {φi}
m
i=1 is a set of sampling vectors and wi is an error term. Of particular interest

is the setting where the number of samples m is much less than the ambient signal
dimension n and hence the error-free measurements constitute an under-constrained
set of linear equations. A large body of work has analyzed this problem under a
variety of assumptions and recovery tasks, and results typically consist of conditions
on the sparsity of x, the sampling vectors {φi}, and the signal-to-noise ratio (SNR)
guaranteeing the success or failure of various algorithms.

The focus in this paper is on the task of sparsity pattern recovery (also known
simply as sparsity or support recovery) which is to determine which elements of x are
non-zero. In the noiseless setting, m = k+1 samples are sufficient for recovery using an
NP hard combinatorial search, and a fundamental result from the field of compressed
sensing by Donoho [1] and Candès, Romberg, and Tao [2,3] is that m = O(k log(n/k))
measurements are sufficient to recover the entire signal x, and hence it support, using
linear programming. Here, the extra factor log(n/k) represents the additional sampling
“cost” associated using efficient algorithms.

Unfortunately, in the presence of any measurement noise, m = Θ(k log(n − k))
samples are needed [4–6]. Here, the factor log(n − k) represents the fundamental
sampling “cost” of measurement error. When k = Θ(n) this cost is significant because
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k

f(SNR)

Reeves & Gastpar [10]

Achievable for GML
(Combinatorial Search)
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(Thresholding)
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This paper

Table 1: Summary of scaling results for k = Θ(n) and finite SNR. The dependence on
the sparsity rate k/n and the bound on the fraction of errors is not shown. Constants
are denoted by C and any increasing nonasymptotic function is denoted by f .

it means that recovery is not possible with m < n samples [7]. Alternatively, if only
m = Θ(k) samples are available and the noise is due to quantization error, this means
that an unbounded rate (in bits) per sample is required.

These negative results have prompted our investigation of approximate support
recovery for which positive results can be given [7–11]. When k = Θ(n), we showed
in [10] that m = Θ(k) samples are necessary and sufficient to upper bound the fraction
of errors in the estimated support. Hence, for the “cost” of a relatively small number
of errors, it is possible to attain the same scalings as in the noiseless cases. This means
that if some small fraction of errors (greater than zero) is allowed, and if the SNR is
sufficiently large, then recovery is possible using a fixed sampling rate ρ = m/n that
is much less then one. Furthermore, if noise is due to quantization error, this means
that it is possible to have both m ≪ n and a fixed rate per sample.

For perfect recovery from noisy samples, Wainwright [4] showed achievability of the
scaling m = Θ(k log(n − k)) for a generalized maximum likelihood (GML) estimator
that requires solving a combinatorial optimization problem. More recently Fletcher et
al [5] showed that the same scaling result can also be achieved by a computationally
simple thresholding algorithm termed maximum correlation (MC). The main difference
in performance between these two algorithms is that the number of samples needed by
GML estimation decreases as the SNR increases (eventually m = k + 1 is sufficient as
SNR → ∞) but the number of samples needed for MC estimation asymptotes. Hence,
the “cost” of the computational efficiency gained by the MC estimator is the inability
to capitalize on large SNR.

The contribution of this paper is to generalize the performance of the MC algorithm
to the problem of approximate sparsity patter recovery. The achievability results for
approximate recovery given in [10] correspond to the same computationally expensive
GML estimator investigated by Wainwright [4]. The results in this paper complete
the picture by determining the complementary performance of the MC estimator. We
show that MC estimation achieves the same approximate recovery scalings as the GML
estimator. Also, as was the case for perfect recovery, our results show that the “cost”
associated with MC estimation is that, unlike the GML estimator, the sufficient number
of samples does not decrease with large SNR. This result is meaningful because it is
the first one to give (bounded error) performance guarantees on sparsity recovery for
a computationally simple algorithm in the setting where m ≪ n. Table 1 shows the
results of this paper in the context of the previous work for the setting k = Θ(n).



2 Problem Formulation

2.1 Notation

We use capital letters such as X and Y to denote random variables and lower case letters
for their realizations x and y. Vectors such as the random vector X = (X1, · · · , Xn) or
its realization x = (x1, · · · , xn) are denoted with boldface. Any subset of the integers
such as the random subset K or its realization k are denoted with an underscore. We
also use a boldface capital letter to denote a random matrix such as A and a regular
capital letter for its realization A. The transpose of a matrix A is denoted by AT .
For any vector x and set of integers k the notation xk denotes the vector of elements
indexed by k. Likewise for a matrix A the notation Ak denotes the submatrix formed
by concatenating the columns of A indexed by k. Assume throughout that logarithms
are natural.

2.2 Sampling Rate and Distortion

We consider estimation of a signal x ∈ R
n where x is known a priori to be exactly

k-sparse but the support k := {i ∈ {1, · · · , n} : xi 6= 0} and the values of the non-zero
elements indexed by k are unknown. It is assumed that x is sampled using m random
measurement vectors Φ1, · · · ,Φm ∈ R

n where Φi are i.i.d. Gaussian N (0, 1
n
In×n). The

resulting observations Y ∈ R
m have the form

Y = Ax + W (2)

where A is the m × n matrix with rows Φi and W is additive white Gaussian noise
N (0, Im×m). It is also assumed that the true support is a random variable K distributed
uniformly over all

(

n

k

)

supports of size k. Under these assumptions, the per-sample SNR
is proportional to the average power of x

SNR :=
E〈Φi,x〉2

EW 2
i

=
1

n
‖x‖2. (3)

Given the sampling matrix A and the samples Y the goal is to estimate the support
K. It is important to observe that there are two different error events: for each index
i ∈ {1, · · · , n} a “missed detection” occurs if xi 6= 0 but i is not included in the
estimated support and a “false alarm” occurs if xi = 0 but i is included in the estimated
support. In this paper, the goal is to minimize the maximum number of each error
type and we use the distortion

d(k, k̂) := max
(

|k\k̂|, |k̂\k|
)

. (4)

Since k is known, minimization of the above metric may equivalently be viewed as
minimizing the total number of errors subject to the constraint that there are an
equal number of each error type. For a given estimator f an error is said to occur
if d(K, f(Y)) > αk where the distortion α ∈ [0, 1] is the allowable fraction of errors
(α = 0 corresponds to perfect recovery).

It is also important to observe that the performance of any algorithm depends
on the non-zero values of x. These values are referred to as the sparsity coefficients
and are denoted by the vector s := xk ∈ R

k. Both deterministic and stochastic
assumptions for the sparsity coefficients are considered. Under deterministic assump-

tions, s is constrained to some subset of R
k and the probability of error P

(n)
e (α) =



sup
s
P (d(K, f(Y)) > αk) corresponds to the worst case. Under stochastic assump-

tions, S is a random vector and the probability of error P
(n)
e (α)=ESP (d(K, f(Y))>αk)

corresponds to the average error with respect to the probability measure on S.
We view the problem of support recovery from a sampling perspective where the

goal is to determine how many samples m are needed as a function of the parameters
k, n, α and the assumptions on the sparsity coefficients. We proceed by considering a
sequence of problems indexed by the dimension n and characterize the behavior of the
problem in the limit as n → ∞. It is assumed throughout that k = Ωn where the
sparsity rate Ω ∈ (0, 1) measures the degrees of freedom per dimension of x and is
analogous to the “bandwidth” of a signal.

We use ρ = m/n to denote the sampling rate and the compressed sensing setting
corresponds to ρ < 1. A sampling rate distortion pair (ρ, α) is said to be achievable

for an estimator f if P
(n)
e (α) → 0 as n → ∞ for a sequence of problems with sampling

rate ρ. Moreover, the sampling rate function ρf(α) is the infimum of rates ρ such that
(ρ, α) is achievable using f , and ρ(α) = inff ρf (α) denotes the best possible sampling
rate function using any algorithm.

2.3 Estimators

The design and analysis of estimators depends on several factors such as the degree
of prior information about the sparsity coefficients, the loss function that is mini-
mized, and computational constraints. Given a target distortion bound α and set of
assumptions on the sparsity coefficients (either deterministic or stochastic), the optimal
estimator is the one that minimizes our loss function, that is

f ∗ = inf
f

Pe(α).

Hence the sampling rate function ρf∗(α) = ρ(α) gives a baseline measure of the best
performance (i.e. lowest sampling rate) that is achievable for any estimator. A lower
bound on ρ(α) is given in [11] for various assumptions on the sparsity coefficients.

In contrast to optimal estimation, the estimators considered thus far in the literature
for achievability results do not utilize any information about the sparsity coefficients
or the distortion α. For instance, the estimator analyzed for perfect recovery in [4] and
approximate recovery in [10] corresponds to the maximum likelihood estimated in the
special case where there is there is uniform prior on the sparsity coefficients and α = 0.
Hence, we refer to it as the generalized maximum likelihood estimate targeting zero
distortion, or simply GML-0. This estimator is computationally expensive because it
requires a search through all possible sparsity patterns and can be expressed as

fGML-0(y) = arg max
k

{

sup
s∈Rk

pY|K(y|K = k)
}

= arg min
k

‖(Im×m − Ak(A
T
k Ak)

−1Ak)y‖.

An upper bound on ρGML-0(α) is given in [11] for various assumptions on the sparsity
coefficients.

The MC estimator analyzed previously for perfect recovery in [5] and in this paper
for approximate recovery provides a computationally efficient alternative to GML-0
estimation. The MC estimate corresponds to the k largest (in magnitude) elements
of the n-dimensional vector ATy. Although such estimation amounts to sorting the
elements of ATy, it may be equivalently represented as an optimization over supports
as

fMC(y) = arg max
k

‖(ATy)k‖.



3 Results

The results in the paper are the characterization of the sampling rate function ρMC(α)
for various assumptions on the sparsity coefficients. Our first result applies to any
setting where the empirical distribution of the sparsity coefficients converges to a non-
random limit.

Theorem 1. For each n, let the empirical distribution function of the squared value of

the sparsity coefficients be given by Fn(u) = 1
k

∑k

i=1 1(s2
i ≤ u). If Fn → F where F is

a distribution function with
∫

R
udF (u) = P < ∞, then ρMC(α) is given by the solution

to
∫

R

G

(
√

ρMC(α)

1 + ΩP
u, Q−1

(

αΩ

2(1 − Ω)

)

)

dF (u) = α (5)

where G(µ, t) = 1 − Q(t − µ) − Q(t + µ) and Q(x) =
∫∞

x
1√
2π

exp(−x2/2).

In the above theorem, the quantity P corresponds to the average power of each
sparsity coefficient si and hence SNR = ΩP . The following corollary addresses the
setting where the limiting distribution is Gaussian.

Corollary 1 (Gaussian Sparsity Coefficients). If the sparsity coefficients are i.i.d. zero
mean Gaussian with variance P then ρMC(α) is given by

ρMC(α) =
1 + ΩP

P











Q−1
(

αΩ
2(1−Ω)

)

Q−1
(

1−α
2

)





2

− 1






. (6)

We remark that the above result clearly illustrates the dependence on the SNR:
The sampling rate function scales like 1/SNR for small values and asymptotes for large
values.

Our next result applies to any setting in which the sparsity coefficients are known
to be bounded.

Theorem 2 (Bounded Sparsity Coefficients). For each n, assume that the sparsity
coefficients obey the elementwise constraints 0 < B ≤ s2

i ≤ C < ∞. Then ρMC(α) is
given by the solution to

sup
F

∫

R

G





√

ρMC(α)

1 + ΩPF

u, Q−1

(

αΩ

2(1 − Ω)

)



 dF (u) = α (7)

where the supremum is over all distribution functions supported on the interval [B, C]
and PF =

∫

R
udF (u).

In the above theorem the quantity PF corresponding to the maximizing distribution
F is the average power of the sparsity coefficients (in the worst case). Although this
value may be hard to compute it general, it is clear that B ≤ PF ≤ C and hence the
SNR is bounded. The following corollary gives a simplified, and necessarily weaker,
sufficient condition.

Corollary 2. Under the same assumptions as Theorem 2, any sampling rate distortion
pair (ρ, α) is achievable using MC estimation if ρ > ρ+

MC
(α) where

ρ+

MC(α) =
1 + ΩC

B

(

Q−1(α) + Q−1( αΩ
2(1−Ω)

)
)2

(8)

≥
8(1 + ΩC)

B
log

(

1 − Ω

αΩ

)

(9)



4 Illustration of Results

This section illustrates the sampling rate functions for MC estimation characterized
in Corollaries 1 and 2. These results are compared with the corresponding results for
optimal and GML-0 estimation from [11].

We first consider the setting of Corollary 1 in which the sparsity coefficients are
zero mean Gaussian with variance P . Figure 1 shows the sampling rate functions for
both high and low SNR, and Figure 2 shows the sampling rates as a function of the SNR
for fixed distortion α = 0.2. In the low SNR setting we see that the MC rate improves
on the GML-0 upper bound. This does not necessarily mean that MC estimation
performs better than GML-0 estimation but it does provide a tighter upper bound on
optimal estimation. In the high SNR setting, we see that GML-0 estimation attains
near optimal performance but the MC estimator has essentially the same performance
as in the low SNR setting.
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Figure 1: Characterization of sampling rate functions for high and low SNR when the sparsity
coefficients are i.i.d. N (0, P ), the sparsity rate is Ω = 10−4, and SNR = ΩP .
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Figure 2: Characterization of sampling rate functions for α = 0.2 as a function of the SNR
when the sparsity coefficients are i.i.d. N (0, P ) and the sparsity rate is Ω = 10−4.



Next, we consider the deterministic setting of Corollary 2 in which the sparsity
coefficients obey the elementwise constraint B ≤ s2

i ≤ C. Figure 3 shows the sampling
rate functions for both high and low SNR, and Figure 4 shows the sampling rates as a
function of the SNR for fixed distortion α = 0.01. All plots correspond to the bounds
B = C/2 with SNR = ΩB. As in the Gaussian setting, we see that MC estimation
provides a tighter bound on ML estimation in low SNR but does not improve as the
SNR increases.

0 0.2 0.4 0.6 0.8 1
10

−4

10
−3

10
−2

10
−1

10
0

Fraction of errors α

S
am

pl
in

g 
ra

te
 ρ

 =
 m

/n

SNR = 0 dB

MC (upper bound)
GML−0 (upper bound)
Optimal (lower bound)

0 0.2 0.4 0.6 0.8 1
10

−4

10
−3

10
−2

10
−1

10
0

Fraction of errors α

S
am

pl
in

g 
ra

te
 ρ

 =
 m

/n

SNR = 20 dB

MC (upper bound)
GML−0 (upper bound)
Optimal (lower bound)

Figure 3: Characterization of sampling rate functions for high and low SNR when the sparsity
coefficients are bounded B ≤ s2

i ≤ 2B, the sparsity rate is Ω = 10−4, and SNR = ΩB.
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Figure 4: Characterization of sampling rate functions for α = 0.01 as a function of the SNR
when the sparsity coefficients are bounded B ≤ s2

i ≤ 2B, the sparsity rate is Ω = 10−4, and
SNR = ΩB.
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