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Abstract—Recent results in compressed sensing have shown
that a wide variety of structured signals can be recovered from
undersampled and noisy linear observations. In this paper, we
show that many of these signal structures can be modeled using
an union of affine subspaces, and that the fundamental number of
observations needed for stable recovery is given by the number
of “free” values, i.e. the dimension of the largest subspace in
the union. One surprising consequence of our results is that
the fundamental phase transition for random discrete–continuous
signal models can be attained by a universal estimator that does
not depend on the distribution.

I. INTRODUCTION

Suppose that we want to recover a fixed, but unknown,
signal x 2 Rn from a set of underdetermined and noisy linear
equations of the form

y = Ax+w (1)

where A 2 Rm⇥n is a known measurement matrix with m <

n and w ⇠ N (0,�

2
I) is Gaussian white noise. Given the

observations (y, A) we seek a reconstruction ˆ

x that is close
to x in mean-squared error.

A great deal of work in the compressed sensing literature
has addressed this problem by selecting an estimate ˆ

x that
is both consistent with the observations and also close to an
assumed signal model. Examples of signal models include
sparse signals [1]–[3], compressible signals [4]–[6], unions
of subspaces [7]–[11], random discrete-continuous mixtures
[12], [13], and block-sparse models [14], [15]. Reconstruction
is said to be stable, with respect to a given signal model, if
there exist universal constants C1 and C2 such that the event

kˆx� xk2  C1kwk2 + C2kx⇤ � xk2 (2)

occurs with high probability where x⇤ denotes the best approx-
imation of x in the signal model (e.g. under the assumption
of sparsity, x⇤ is the best k-term approximation of x).

The tradeoff between the number of measurements and
the reconstruction error has been studied extensively. One
approach (e.g. [1], [7]–[11]) has been to derive sufficient
conditions in terms of certain properties of the measurement
matrix and the signal class, such as the restricted isometry
property, the mutual incoherence, or generalizations thereof.
Conditional on these properties holding, it is shown that the
number of measurements required for stability is proportional
to the number of “degrees of freedom” in the signal class.

One limitation of this approach, however, is that the result-
ing conditions are loose — stability is guaranteed only if the
number of measurements exceeds a critical cutoff point, and
this cutoff point does not match the number of measurements
needed for exact recovery in the absence of noise.1

A different approach (e.g. [13], [16]–[20]) has been to study
the fundamental behavior for random signals generated from
a known distribution (or class of distributions). In these cases,
careful analysis has shown the exact location of certain phase
transitions in the large system setting. These results, however,
are asymptotic and require prior knowledge of a distribution.

This paper makes the following contributions:
• Union of affine subspaces model: We show that many of

the signal models studied in compressed sensing can be
modeled using a finite union of affine subspaces (UAS):

U =

N[

i=1

Vi, Vi = {˜vi + span(Vi)}, Vi 2 Rn⇥di
. (3)

While non-affine subspace models have been studied
previously [7]–[11], the addition of an affine component
allows us to include important structural information
about the unknown signal. For example, in Section III we
draw a connection between the UAS model and random
signals whose entries are drawn i.i.d. according to a
discrete-continuous mixture. Using this connection, we
show that universally stable recovery is possible even if
the underlying distribution is unknown.

• Fundamental limits of stability: We derive an explicit
and non-asymptotic result (Theorem 1) which shows
that the minimum number of measurements m needed
for stable recovery in the UAS model is given by the
dimension d of the largest subspace, i.e.

m > d = max

i
rank(Vi) =) stable recovery.

With respect to previous work on subspace models, this
result closes several existing gaps between the sufficient
conditions for exact recovery in the absence of noise and
the sufficient conditions for stable recovery in noise.

1For example, although it is well known that a k-sparse signal can be
recovered from m = k + 1 randomly generated noiseless measurements,
standard results in compressed sensing require m = ⌦(k log(n/k)) for stable
recovery in the noisy setting (see e.g. [1], [2] and subsequent work).



II. MAIN RESULT

We focus on recovery with respect to the finite UAS model
given in (3). The dimension of the largest subspace

d = max

i2{1,2,··· ,N}
rank(Vi) (4)

is referred to as the number of free values.
For any vector x 2 Rn and subspace U ⇢ Rn, we define

the dimension-normalized distance

⇢U (x) = min

u2U
1
nkx� uk.

Given observations (y, A), we consider the least squares
estimator restricted to the set U :

ˆ

x = argmin

u2U
ky �Auk2. (5)

It is important to note that, depending the choice of U , this
optimization problem may be computationally infeasible in
practice. The reason we study its performance is to illustrate
the fundamental limits of recovery.

Finally, we study the behavior when the measurement
matrix A is a random m⇥ n matrix, generated independently
of x and w, with i.i.d. Gaussian entries.

We now state our main result which is a non-asymptotic
upper bound on the probability that the reconstruction error is
large. In this result, the parameter t provides a explicit tradeoff
between the size of the constants C1 and C2 given in (2) and
the probability that the inequality holds.

Theorem 1 (Stability). Fix any vector x 2 Rn
and finite union

of affine subspaces U ⇢ Rn
. Consider the observation model

(1) where A has entries i.i.d. N (0, 1/m), independent of w.

If the number of measurements m exceeds the number of free

values d, then recovery using the constrained least-squares

estimator given in (5) is stable in the sense that, for all t > 1,

P

kˆx� xk2

n

� m

n

h�
�

2
+ ⇢

2
U (x)

�
Cm,d,N · t� �

2
i�

 2e

�m�d
2 �(t) (6)

where probability is taken with respect to A and w, and

Cm,d,N =

(m+ 1)

(m� d+ 1)


L�1

✓
log(N)

m� d

◆�2

�(t) = 2L
 

t

1 +

p
tL(t)

!

with

L(x) =
(
log(x) + 1/x� 1, x � 1

0, x < 1

.

Proof Sketch: A proof is given in [3, Section IV] for the
special case where U models the set of k-sparse signals and it
is assumed that x 2 U (and hence ⇢U (x) = 0). The extension
to general subspaces relies heavily on the rotational invariance
of the Gaussian distribution of A and w, and the properties
of affine projections.
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Fig. 1. Illustration of �(t) as a function of t. Note that �(t) is positive
and strictly increasing for all t > 1.

We remark that the condition for stability in Theorem 1
depends only on the number of free values d, but not the
number of subspaces, N , nor the relative positions of the
subspaces — it is possible that some of the subspaces are
very close to each other while others are far apart.

Moreover, Theorem 1 does not require us to verify whether
certain properties of A (e.g. mutual incoherence or restricted
isometry) hold. In fact, it shows that recovery is possible in
settings where it is known that these properties cannot hold
(e.g. when m ⇡ d). As a consequence, Theorem 1 improves
over previous results which guarantee stability only when the
ratio m/d exceeds a critical cutoff that is greater than one.

Finally, we remark that Theorem 1 makes no assumptions
a priori about the relationship between x and U . If it happens
that x is an element of U then ⇢

⇤
U (x) = 0 and the reconstruc-

tion error is proportional to the noise power �

2. The worst
case ratio between the expected mean-squared error and the
noise power is referred to as the noise sensitivity [3], [21] and
is given by

sup

x2U
sup

�2�0

E
⇥
kˆx� xk2

⇤

n�

2
(7)

where the expectation is taken with respect to A and w.
The following result shows that boundedness of the noise

sensitivity corresponds directly to the number of free values.

Theorem 2 (Noise Sensitivity). Consider the setting of The-

orem 1. The noise sensitivity is finite if m > d + 2 and is

infinite if m < d+ 2.

Proof Sketch: To prove finiteness, we start with the fact

E
⇥
kˆx� xk2

⇤
=

Z 1

0
P
⇥
kˆx� xk2 > u

⇤
du,

and then apply Theorem 1. Since �(t) obeys �(t)/ log(t) !
1 as t ! 1, the integral if finite for m > d+2. The converse
follows similarly to the proof of [3, Theorem 4].



III. EXAMPLES OF THE UAS MODEL

This section shows how the UAS model and Theorem 1 can
be used to derive the fundamental limits for several different
signal models considered in compressed sensing. The number
of affine subspaces, N , and the number of free values, d, for
these models is summarized in Table I below.

A. Strict Sparsity

Consider the set of all vectors with at most k nonzero
entries. It is well known that this set can be expressed as
a union of N =

�n
k

�
linear subspaces, i.e.

{x 2 Rn
: kxk0  k} =

N[

i=1

span(Vi)

where each Vi 2 Rn⇥k is a concatenation of k distinct
columns from the n ⇥ n identity matrix. For this special
case, the asymptotic behavior of Theorem 1 is studied in [3].
Interestingly, it is shown by comparison with lower bounds
on the mean-squared error, that the behavior of the constant
Cm,d,N is relatively tight.

B. Small number of distinct values

A different notion of structure is to consider the set of all
vectors with at most k distinct values, i.e.

{x 2 Rn
: val(x)  k}

where val(x) = |{x : x = xi for some i 2 [n]}|. This set
models all signals which can be represented exactly by at most
k distinct quantization points. No assumptions are made about
the nature of these values.

The class of k-valued vectors has been studied in various
forms for representing signals with clustered entries (see e.g.
[14], [22]) It is straightforward to show that this class can be
expressed as a union of N = k

n
/k! linear subspaces. Here,

the numerator comes from all possible allocations of n entries
to k values and the denominator comes from the fact that the
ordering of the values does not matter.

C. Discrete–Continuous Mixtures

A more general signal model is to assume that all but k

entries belong to some finite set B = {b1, b2, · · · , b`}, i.e.

{x 2 Rn
: |{i : xi /2 B}|  k}.

The special case B = {0} corresponds to the set of k-sparse
vectors. For the special case B = {0, 1}, this set, combined
with the constraint 0  xi  1 for all i, corresponds to the
class of “simple” signals studied by Donoho and Tanner [12].

This class can also be used to model a typical realization
of a random vector x whose entries are i.i.d. PX where

PX = (1� ")Pd + "Pc

for some mixing weight " 2 (0, 1), absolutely continuous
distribution Pc, and discrete distribution Pd with finite support
B. By the law of large numbers,

1

n

|{i : xi /2 B}| ! ", as n ! 1,

and thus we can choose k ⇡ "n so that x belongs to the UAS
model with high probability.

Let us first consider the case where the set B is known.
The discrete-continuous mixture class can be modeled using
a bipartite graph as shown in Figure 2. Each entry in x

is connected to either a “free” variable (whose value is
unconstrained) or a “fixed” variable, belonging to the set B.
Each edge structure E defined on the this graph can be mapped
to an affine subspace V = {˜v + span(V )} where

ṽ↵ =

(
b� , if there is an edge from x↵ to b�

0, otherwise

and V a diagonal matrix with

V↵,↵ =

(
1, if there is an edge from x↵ to a ‘free’ variable
0, otherwise

The total number of affine subspaces is given by the total num-
ber of edge structures defined on the graph (up to permutations
of the free variables), and thus

N = `

n�k ⇥
✓
n

k

◆
.

where the first term comes from number of sequences drawn
from B and the second term corresponds to the allocation of
the free variables.

Alternatively, we may consider the case where we know
the size ` of the set B, but the values {bi} are unknown. This
means that for a typical realization of x, the entries can be
categorized into one of two groups: one group has about "n
distinct entries and the other group has about (1� ")n entries
with no more than ` values. Thus, we consider the set

{x 2 Rn
: |{i : xi /2 ˜

B}|  k, for some ˜

B with | ˜B|  `}

In this case there are a total of d = k + ` free values. Each
edge structure E can be mapped to a linear subspace that
corresponds to an allocation of these values to the entries in
x. There are

N =

`

n�k

`!

⇥
✓
n

k

◆

subspaces where the division by `! is due to the fact that the
order of the variables assigned to the set ˜

B does not matter.
This example shows that when the support is unknown, the

number of measurements needed for stability increases from
k to k + `. In the asymptotic setting, when ` is fixed and
k/n ! ", this means that the undersampling ratio m/n is
dictated by the weight of the “continuous” part of the signal,
regardless of whether or not the support of the discrete part is
known.

D. Finite Set

Finally, it is clear that any finite set of signals

{x1,x2, · · · ,xN}

is a union of N affine subspaces, each with dimension 0. Thus,
our results cover cases where x can be quantized to a known
set of points.



TABLE I
EXAMPLES OF SIGNAL CLASSES COVERED BY THE UNION OF AFFINE

SUBSPACES MODEL. THE NUMBER OF FREE VARIABLES IS THE DIMENSION
OF THE LARGEST SUBSPACE IN THE UNION.

signal class # of subspaces N # of free variables d

k-sparse
�n
k

�
k

k-valued kn/k! k

discrete–continuous
(known support) `n�k ⇥

�n
k

�
k

discrete–continuous
(unknown support)

`n�k

`! ⇥
�n
k

�
k + `

finite set N 0

x1

x2

x4

x3

x5

x6

x7

x8

x9

b1

b2

b3

b4

f1

f2

f3

fixed variables

free variables

Fig. 2. Illustration of bipartite graph G. An edge structure E is an assignment
of edges from variables in x to either the fixed or free variables. The set of k-
sparse signals corresponds to a graph with a single fixed variable at 0, k free
variables, and a least n�k entries in x connected to 0. The set of k-valued
signals corresponds to a graph with no fixed variables and k free variables.

IV. DISCUSSION

This paper studies the fundamental limits of stable recovery
with respect to the UAS model. We show that the critical
number of measurements depends only on the number of free
values which is given by the dimension of the largest subspace.

We also demonstrate how the UAS model applies to a
number of interesting signal classes considered in compressed
sensing. Unlike models based on compressible signals, which
can be well approximated by a discrete set of quantization
points, the UAS model places no restrictions on the number
of signals in the model nor their magnitudes. Also, unlike
the non-affine subspace models, the UAS model allows us
to incorporate additional structural information, such as the
knowledge that some fraction of the entries in x belong to a
known finite set while the remaining entries are unconstrained.

A key question for future work is the extent to which the
fundamental stability results studied herein can be realized
using computationally efficient recovery algorithms.
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