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9.1 Motivation: Quantization of Random Variables

• A continuous source contains an infinite amount of information and cannot be represented
exactly using a finite number of bits.

• In lossy source coding, we seek instead a representation that is close to the source (with
respect to some fidelity criterion) and can be represented using a finite number of bits.

• Quantization:

◦ Let X be a random variable

◦ For every value X = x, we would like to find a representation x̂(x) where x̂ can take on
only 2R different values for a given rate R (measured in bits).

• Example: Quantizing a Gaussian random variable with squared error distortion:

◦ Let X ∼ N (0, σ2)

◦ Consider mean squared error distortion

E
[
(X − x̂(X))2

]
◦ If we use 1 bit to represent X (i.e., we can chose only two different reconstruction

symbols), then we should use the bit to indicate whether X is positive or negative.

◦ To minimize the square error distortion, the reconstruction symbols should be the con-
ditional mean given the sign

x̂(x) =

{
E[X|X > 0], x > 0

E[X|X < 0], x < 0
=


√

2
πσ

2, x > 0

−
√

2
πσ

2, x < 0
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◦ The average distortion will then be

E
[
(X − x̂(X))2

]
=

1

2
E
[
(X − x̂(X))2|X > 0

]
+

1

2
E
[
(X − x̂(X))2|X ≤ 0

]
= E

[
(X − x̂(X))2|X > 0

]
=

(
1− 2

π

)
σ2

◦ If we are given 2 bits to represent X, we should divide the real line into 4 regions and
use the conditional means within each region as the reconstruction points. However, it
is not obvious how we should choose these regions.

• In general, a quantization scheme is characterized by a partition {Vi} of the space and the
corresponding reconstruction points {x̂i}.

x ∈ Vi =⇒ x̂(x) = x̂i

The regions and reconstruction points should satisfy:

◦ Given a set of reconstruction points, the regions should be chosen to minimize the
distortion. Under the squared-error distortion, this occurs if the regions are the Voronoi
cells

Vi = {x : ‖x− xi‖ < ‖x− xj‖ for all j 6= i}

◦ Given a set of regions, the reconstruction points should be chosen to minimize the
distortion. Under squared error distortion, this is given by the conditional mean

x̂i = E[X|X ∈ Vi]

• Lloyd’s Algorithm is an iterative algorithm for constructing a quantization function. Start-
ing with an initial set of reconstruction points, the algorithm repeats the following two steps:

(1) Given reconstruction points, find optimal set of regions

(2) Given regions, find optimal set of reconstruction points.

This algorithm will converge to a local optimum (but not necessarily the global optimum).

• Vector Quantization

◦ Let Xn = [X1, · · · , Xn] be an length-n random vector with iid entries

◦ For every realization Xn = xn we would like to find a representation x̂n(xn) where x̂n

can take on only 2nR different values for a given rate R (measured in bits).

◦ One option is to use the rate R scalar quantization strategy outlined above.

◦ It turns out that quantizing jointly can be much better than quantizing separately.

• Recap:

◦ scalar quantization: Approximate X with R bits

◦ vector quantization: Approximate Xn with nR bits
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9.2 Lossy Source Coding Definitions

• Intuition: Using more bits reduces quanitization error. How can we quantify this this tradeoff?

• Illustration of a (2nR, n) lossy source code

Xn

source
encoder
fn

decoder
gn

X̂n

reconstruction
W ∈ {1, . . . , 2nR}

• The source produces a sequence X1, X2, · · · of iid random variable with distribution p(x)
supported on a finite alphabet X .

• The encoder is a mapping fn : X n → {1, 2, · · · , 2nR} that describes every source sequence
by an index w. The rate is given by

R =
log # of indices

n
bits per symbol

• The decoder gn : {1, 2, · · · , 2nR} → X̂ maps each index to an estimate X̂ ∈ X̂ n where X̂ is
the reconstruction alphabet.

• Definition: A per-letter distortion measure is a mapping

d : X × X̂ → R+

from the set of source alphabet - reconstruction pairs to the nonnegative real numbers. In most
cases, the reconstruction alphabet is equal to the source alphabet. The distortion measure is
bounded it the maximum value of the distortion is finite

d is bounded ⇐⇒ max
x∈X ,x̂∈X̂

d(x, x̂) <∞

• The Hamming distortion is defined as

d(x, x̂) =

{
0, if x = x̂

1, if x 6= x̂

• The squared-error distortion is defined as

d(x, x̂) = (x− x̂)2

• The distortion between two sequences xn and x̂n is given by the average per-letter distortion

d(xn, x̂n) =
1

n

n∑
i=1

d(xi, x̂i)

• Definition: A (2nR, n) rate distortion coding scheme consists of

◦ a source alphabet X and reconstruction alphabet X̂ .

◦ encoding function fn : Xn → {1, 2, · · · , 2nR}
◦ decoding function gn : {1, 2, · · · , 2nR} → X̂n.
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◦ a distortion measure d

• The distortion associate with the (2nR, n) coding scheme is given by the expected distortion

E
[
d(Xn, X̂n)

]
=
∑
xn

p(xn)d(xn, gn(fn(xn)))

• Definition: A rate distortion pair (R,D) is said to be achievable for a source p(x) and
distortion measure d(·, ·) if there exists a sequence of (2nR, n) rate-distortion coding schemes
with

lim sup
n→∞

E[d(Xn, gn(fn(Xn)))] ≤ D

• Definition: the rate distortion region for a source is the closure of the set of achievable
distortion pairs (R,D).

• Definition: The rate distortion function R(D) is the infimum of rates R such that (R,D) is
in the rate distortion region. Likewise, the distortion rate function D(R) is the infimum of
distortions such that (R,D) is in the rate distortion region.

0
0

H(X)

Distortion D

Rate R

achievable
not achievable

R(D)

9.3 The Rate Distortion Coding Theorem

• Definition: The information rate distortion function R(I)(D) for a source p(x) with distor-
tion measure d(x, x̂) is defined as

R(I)(D) = min
p(x̂|x)

I(X; X̂)

where the minimum is over all distributions p(x̂|x) such that the pair (X, X̂) satisfy the
distortion constraint

E
[
d(X, X̂)

]
≤ D, (X, X̂) ∼ p(x)p(x̂|x)

• Theorem: The rate distortion function for an i.i.d. source p(x) and bounded distortion
measure d(·, ·) is equal to the associated information rate distortion function, i.e.

R(D) = R(I)(D)

◦ Achievability: R > R(I)(D) =⇒ the pair (R,D) is achievable

◦ Converse: the pair (R,D) is achievable =⇒ R ≥ R(I)(D)
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9.3.1 Example: Binary Source

• Theorem: The rate distortion function for an iid Bernoulli(p) source with Hamming distor-
tion is given by

R(D) =

{
H(p)−H(D), 0 ≤ D ≤ min{p, 1− p}
0, D > min{p, 1− p}

0 p 1
0

Hb(p)

D

R(D)

• Proof of ≥:

◦ Need to show that for any distribution p(x̂|x),

P
[
X 6= X̂

]
≤ D =⇒ I(X; X̂) ≥ R(D)

◦ Without loss of generality, assume p < 1/2.

◦ Note that X ⊕ X̂ = 1⇐⇒ X̂ 6= X

◦ For any p(x̂|x) obeying P
[
X 6= X̂

]
≤ D, we have

I(X; X̂) = H(X)−H(X|X̂)

= H(p)−H(X ⊕ X̂|X̂)

≥ H(p)−H(X ⊕ X̂) Conditioning cannot increase entropy

= H(p)−Hb

(
P
[
X 6= X̂

])
≥ H(p)−Hb(D) since H(D) > H(D′) for all D′ < D

◦ Thus, for D < p,

R(D) ≥ H(p)−H(D)

• Proof of ≤:

◦ The goal is to show that there exists p(x̂|x) such that P
[
X 6= X̂

]
≤ D and I(X; X̂) ≤

R(D)

◦ Without loss of generality, assume p < 1/2.

◦ If D ≥ p then distortion is achieved automatically and R = 0 suffices.

◦ Henceforth, we assume D < p.

◦ The trick is to consider a channel with input X̂ and output X defined by p(x|x̂). Note
that given p(x), there is a one-to-one mapping between p(x̂|x) and p(x|x̂)
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◦ For this problem, it is useful to consider the binary symmetric channel with cross over
probability D shown below:

X̂ X

0

1

0

1

1−D
D

D

1−D

◦ We want choose the distribution on X̂ so that X is Bernoulli(p). This requires that

P[X = 1] = P
[
X̂ = 1

]
(1−D) + P

[
X̂ = 0

]
D = p

or equivalently,

P
[
X̂ = 1

]
=

p−D
1− 2D

, P
[
X̂ = 0

]
=

1− p−D
1− 2D

◦ With this marginal distribution X̂, it then follows that

I(X; X̂) = H(X)−H(X|X̂) = H(p)−H(D)

and the expected distortion is P
[
X 6= X̂

]
= D.

9.3.2 Example: Gaussian Source

The rate distortion coding theorem stated above assumes discrete sources and bounded distortion
measures. It turns out that the theorem can also be proved for well-behaved continuous sources,
such as for the case of Gaussian source with squared error distortion.

• Theorem: The rate distortion function for an N (0, σ2) source with squared-error distortion
is

R(D) =


1

2
log

(
σ2

D

)
, 0 ≤ D ≤ σ2

0, D > σ2

0 σ2 1
0 D

R(D)

• Proof of ≥:

◦ Let (X, X̂) be distributed such that X ∼ N(0, σ2) and E
[
(X − X̂)2

]
≤ D.
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◦ The mutual information obeys the following inequalities:

I(X; X̂) = h(X)− h(X|X̂)

=
1

2
log
(
2πeσ2

)
− h(X − X̂|X̂)

≥ 1

2
log
(
2πeσ2

)
− h(X − X̂)

≥ 1

2
log
(
2πeσ2

)
− 1

2
log
(

2πeE
[
(X − X̂)2

]
)
)

≥ 1

2
log
(
2πeσ2

)
− 1

2
log(2πeD)

=
1

2
log

σ2

D

◦ Hence, if D < σ2,

R(D) ≥ 1

2
log

σ2

D

• Proof of ≤:

◦ Consider the inverse channel with input X̂ and output X.

◦ In this case, we choose the Gaussian channel:

X = X̂ + Z, X̂ ∼ N (0, σ2 −D), Z ∼ N (0, D)

where X̂ and Z are independent.

◦ Then,

I(X; X̂) = h(X)− h(X|X̂)

=
1

2
log(2πeσ2)− 1

2
log(2πeD)

=
1

2
log

σ2

D

and also

E
[
(X − X̂)2

]
= E

[
Z2
]

= D

• The distortion rate function is given by

D(R) = σ22−2R

• Comparison of scalar quantization and rate-distortion at rate R = 1

◦ Scalar quantization: D = (1− 2
π )σ2 ≈ 0.36σ2

◦ Distortion rate function: D = 1
4σ

2.

9.3.3 Properties of the Rate Distortion Functions

• Theorem: The rate distortion function R(D) is a non-increasing convex function of D.

• Proof:
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◦ The rate distortion function is the minimum of the mutual information over increasingly
larger sets as D increases. Thus R(D) is non-increasing.

◦ Consider two rate distortion pairs (R1, D1) and (R2, D2) which lie on the rate distortion
curve.

◦ Let p1(x, x̂) = p(x)p1(x̂|x) and p2(x, x̂) = p(x)p2(x̂|x) be the distributions that achieve
these pairs.

◦ For λ ∈ [0, 1] consider the distribution

pλ(x̂|x) = λ p1(x̂|x) + (1− λ) p2(x̂|x)

◦ By the linearity of expectation, the distortion associated with pλ(x, x̂) is given by

Dλ = λD1 + (1− λ)D2

◦ Since mutual information I(X; X̂) is convex with respect to the conditional distribution
p(x|x̂), the rate distortion function at Dλ obeys

R(Dλ) ≤ I(p(x), pλ(x̂|x))

≤ λ I(p(x), p1(x̂|x)) + (1− λ) I(p(x), p2(x̂|x))

= λR(D1) + (1− λ)R(D2)

9.4 Converse to the Rate Distortion Coding Theorem

• We now prove the converse to the rate distortion coding theorem. In particular, we show that
for any (2nR, n) coding scheme,

E[d(Xn, gn(fn(Xn)))] ≤ D =⇒ R ≥ R(D)

• Let X̂n = gn(fn(Xn)) and observe that:

nR ≥ H(fn(Xn)) range of fn at most 2nR

≥ H(fn(Xn))−H(fn(Xn)|Xn)

= I(Xn; fn(Xn))

≥ I(Xn; X̂n) data processing inequality

= H(Xn)−H(Xn|X̂n)

=

n∑
i=1

H(Xi)−H(Xn|X̂n) Xi are independent

=
n∑
i=1

H(Xi)−
n∑
i=1

H(Xi|X̂n, Xi−1, · · · , X1) chain rule

≥
n∑
i=1

H(Xi)−
n∑
i=1

H(Xi|X̂i) conditioning cannot increase entropy

=

n∑
i=1

I(Xi; X̂i)

≥
n∑
i=1

R
(
E
[
d(Xi, X̂i)

])
definition of rate distortion function
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= n

(
1

n

n∑
i=1

R
(
E
[
d(Xi, X̂i)

]))

≥ nR

(
1

n

n∑
i=1

E
[
d(Xi, X̂i)

])
convexity of R(D) & Jensen’s inq.

= nR
(
E
[
d(Xn, X̂n)

])
extension of distortion function

≥ nR(D) since R(D) is nonincreasing
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