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8.1 Gaussian channel

e In many real-world applications, the difference between what is sent X and what is received
Y can be modeled as additive white Gaussian noise.

e The discrete time Gaussian channel is given by

Z;

where Z; ~ N (0, N) is independent of Xj.

e Without any constraints, the capacity is infinite!

e To mode real-world constraint, impose average power constraint on codewords (z1, xg, - ,Ty)
n
1
— E 2 <P
n “
=1

e Example: A simple strategy for communication on the AWGN channel

o Send X = +v/P to communicate 1 and —v/P to communicate 0. This obeys the average
power constraint.

o The received signal is
Y=+VP+Z

o Since noise is symmetric, the optimal decoder is given by

IfY >0 = decide +VP
IfY <0 = decide —VP
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o The probability of error is

I 1 1
error | X = \/ﬁ] 5 + P{error | X = —\/ﬁ} =

2
P[2 < -vP|+ %P[Z > VP

:Z > \/ﬁ}

:N(O,l) > JP/W}

— 1 a(y/P/N)

where ®(z) is the CDF of the standard Gaussian distribution

O(x) = / \/12?e_t2/2dt

o In this example, we have converted Gaussian channel into a discrete BSC with p = P..
It turns out we can do much better (at least when when the SNR P/N is large).

P, =

= = vl =

e Definition: The information capacity of the Gaussian channel is

C = max  I(X;Y)
f(z) - E[X?]<P

e Theorem: The information capacity of the Gaussian channel with additive noise power N

and power constraint P is
1 P
C=-1 1+ —

e Proof:

o The mutual information can be expressed as

I(X;Y)=h(Y) - h(Y|X)
=h(Y)—-h(X+ Z|X)
= h(Y) = h(Z)
=h(Y)— %log(QweN)

o The maximum of the first term occurs when Y is Gaussian:

max  h(Y) = max  h(X + 2)
f(z) - E[X?]<P f(z) - E[X?]<P
< max h(Y)

~ f(y) :EYZ<P+N

= %log(27re(N + P))

o Putting everything together gives

1 N+ P 1 P
. < — —_ .

o This holds with equality when X ~ N (0, P)



ECE 587 / STA 563: Lecture 8 3

e Definition: A rate R is achievable for the Gaussian channel with power constraint P if
there exists a sequence of (2", n) coding schemes satisfying the power constraint such that
the maximal probability of error converges to zero as n becomes large. The capacity of the
channel is the supremum of the achievable rates.

e Theorem: The capacity of the Gaussian channel with additive noise power N and power
constraint P is equal to the information capacity:

1 P
C= 3 10g<1 + N> bits per transmission

e Proof:

(1) Achievability: R < C = R is achievable.
(2) Converse: R is achievable =— R < C.

e For an intuitive explanation of the channel capacity, consider sphere packing.

SIA

| N +(P
I

05

o Suppose codeword z"(7) is sent. The received vector Y™ = z"(i) + Z™ obeys
LE[y" - e @] = ~E[|2")?] = N
n n

Thus, with high probability, the received vector is contained in a sphere is radius
n(N + €) around the true codeword.

o If our decoder assigns everything in this region to the i-th message, then an error occurs
under the following events:

(1) the received error falls out side the ball (i.e., big noise);
(2) the sphere of another codeword z"(j) overlaps with the i-th sphere.
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Since the codewords obey an average power constraint, the average power of Y" obeys
1 1
R[] = S E[IX"(W) + 2"|?) < P+ N

and thus, with high probability,

1

The number M of messages we can send reliably is given by the number of spheres of
radius ~ v/N that can we pack inside sphere of radius ~ v/P + N

The volume of an n-dimensional sphere of radius r is

7.‘.n/2

Tnz+1) =~

Thus, the maximum number of nonintersecting spheres is upper bounded by the ratio
of the volumes

M < =
~ volume of small sphere Ch( N)"/ 2

volume large sphere  C,(N + p)"/? B ( N P>"/2
B N

The rate of the corresponding code is

logM 1n P 1 P
= =——log|l+ =) ==log|1+ —
R n n 2 og( +N> 20g< +N>

8.1.1 Parallel Gaussian Channels

e Consider k£ independent Gaussian channels in parallel with a common power constraint.

i=X1+2;
Yo =Xo+ 2o
Y. =X+ Z;

Examples:

o OFDM (orthogonal frequency-division multiplexing), parallel channels formed in fre-

quency domain

o MIMO (multiple-input-multiple-output) - multiple antenna systems

The noise Z; is independent with

The total power constraint across the channels

k
Y P<P,  P=E[X]]
j=1

The goal is to distribute the power amongst the channels to maximize the total capacity
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e For any allocation of powers obeying the power constraint, the mutual information obeys

I(xk ) =

e This upper bound is achieved when X; are independent with

X; ~ N(0, P;)
and thus the capacity is
C = I(Xk vk

max
Xk 3 E[X2]<P

N;

(shift invariance)
(Z* independent of X*)

(independence bound)

(Gaussian has max entropy)

k
1 P ,
:m]%x2;2101%(14-Z)7 subject to ZBSP, P >0
1= (2

e This is constrained optimization problem. Consider the Lagrangian

k
1 P;
i=1 ¢ i

e Since

1=

k

1

. "1 P 25
}\I;%(X;QIOg(l—FNi) —A(;B—P)) = i=1

the objective function can be expressed as

C = sup inf J(Py,---, Py, )

P;>0 >0

e Swapping the order of the max and sup provides an upper bound:

C <inf sup J(Py, -, Pg, \)

A>0 P;>0
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e For each A, the derivative of J(Py,-- -, Py, A) with respect to P; is given by

0 & 1
PPN = ———— —
0P, ( ) 2(N; + )
thus
1
P < ST N, = J(P, -, P, \) is increasing with respect to P;
1
P> o N, = J(P,---, P, \) is decreasing with respect to P,
Recalling that P; are nonnegative, it thus follows that J(Py,--- , P, A) is maximized when
1 1
— —N;, ——N;>0 1
Pr(\) = 2) 21>‘ = max(Q)\ Ni,O)
0 — —N; <0
) 2)\ 1T =

and thus, for each A > 0,

k
P*(X) .
IE%J(Pl,...,Pk,A)ZZ;1og<1+ > (ZP )
(2
e The above expression provides an upper bound on C'. Let A* be the value of A such the power
constraint is met with equality, i.e.
Y P(\)=P
i

This value is guaranteed to exists because P;(\) is continuous and increasing in A. Then,

k
1 Pr(\*
C<JPEO), . BE A =3 21°g<1 " z(v)>
=1 !

e By construction, the power allocation P;*(\*) satisfies the constraints of our problem and thus

is a feasible solution. Since it matches the upper bound on the objective function, we know
that it is the optimal solution. We conclude that

C= Z log <1+ ](VA*)>

e This solution is known as water filling.

Py
Py Ps

No
M N5

chan}lel 1 chanhel 2 Chan}lel 3 chan}lel 3 Chan}lel 5

e This same story also holds true if the noise is correlated between channels. We apply water
filling to the the eigenvalues of the covariance matrix K of the noise.
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