7.1 Entropy of Continuous Variables

Let X be a continuous real-valued random variable with probability density function (pdf) $f_X(x)$ given by:

$$
P[X \leq x] = \int_{-\infty}^{x} f_X(t) dt$$

- Divide range of X into bins of length Δ.

- By mean value theorem, there exists a valued x_i in the ith bin such that

$$f(x_i)\Delta = \int_{i\Delta}^{(i+1)\Delta} f(x) dx$$

- Consider the quantized random variable X^Δ defined by

$$X^\Delta = x_i \text{ if } i\Delta \leq X < (i + 1)\Delta$$

- The random variable X^Δ has alphabet \{x_1, x_2, \cdots \} and pmf

$$p_{X^\Delta}(x_i) = f(x_i)\Delta$$
• The entropy of the quantized variable X^Δ is

$$H(X^\Delta) = -\sum_i p(x_i) \log p(x_i)$$

$$= -\sum_i \Delta f(x_i) \log(f(x_i)\Delta)$$

$$= -\sum_i \Delta f(x_i) \log f(x_i) - \sum_i \Delta f(x_i) \log \Delta$$

$$= -\sum_i \Delta f(x_i) \log f(x_i) - \log \Delta$$

• If the function $f_X(x) \log f_X(x)$ is Riemann integrable, then the limit of the first term as Δ becomes small is given by

$$\sum_i \Delta f_X(x_i) \log f_X(x_i) \to \int f_X(x) \log f_X(x) dx, \quad \text{as } \Delta \to 0$$

• Thus, for small Δ, we have

$$H(X^\Delta) \approx \int f_X(x) \log \left(\frac{1}{f_X(x)}\right) dx + \log \left(\frac{1}{\Delta}\right)$$

• Therefore:

1. As $\Delta \to 0$, the entropy of the quantized version blows up

$$H(X^\Delta) \to \infty \quad \text{as } \Delta \to 0$$

This means the entropy of a continuous random variable is infinite.

2. As $\Delta \to 0$, the difference between the entropy of the quantized version and $\log(1/\Delta)$ satisfies

$$\lim_{\Delta \to 0} \left(H(X^\Delta) - \log \left(\frac{1}{\Delta}\right) \right) = \int f_X(x) \log \left(\frac{1}{f_X(x)}\right) dx$$

7.2 Differential Entropy

• **Definition:** The differential entropy $h(X)$ of a continuous random variable X is

$$h(X) = -\int f(x) \log f(x) dx$$

Sometimes denoted $h(f)$.

• **Example:** Uniform distribution:

 o The pdf is given by

 $$f(x) = 1/a, \quad x \in [0, a]$$

 o The differential entropy is $h(X) = \int_0^a \frac{1}{a} \log(a) dx = \log a$

 o Note that for $a < 1$, we have $\log a < 0$ and so differential entropy can be negative!

 o Note that $2^{h(X)} = 2^{\log a} = a$ is the size of the support set.
• **Example:** Normal distribution

 ○ The pdf is given by
 \[
 f(x) = \phi(x) = \frac{1}{\sqrt{2\pi} \sigma^2} e^{-\frac{x^2}{2\sigma^2}}
 \]

 ○ The differential entropy measured in nats is
 \[
 h(\phi) = \int_{-\infty}^{\infty} \phi(x) \ln \phi(x) dx
 = \mathbb{E} \ln \phi(X)
 = \mathbb{E} \left[\frac{X^2}{2\sigma^2} + \frac{1}{2} \ln 2\pi \sigma^2 \right]
 = \frac{1}{2} \ln e + \frac{1}{2} \ln (2\pi \sigma^2)
 = \frac{1}{2} \ln 2\pi e \sigma^2,
 \text{nats}
 \]

 ○ changing the base gives
 \[
 h(\phi) = \frac{1}{2} \log 2\pi e \sigma^2
 \text{ bits}
 \]

 ○ for \(a < 1 \), we have \(\log a < 0 \) and so differential entropy can be negative!

 ○ note that \(2^{h(X)} = 2^{\log a} = a \) is the size of the support set.

• The **joint differential entropy** between \(X \) and \(Y \) is defined by
 \[
 h(X, Y) = \int f_{X,Y}(x, y) \log \left(\frac{1}{f_{X,Y}(x, y)} \right) dx dy
 \]

• The **conditional differential entropy** of \(X \) given \(Y \) is defined by
 \[
 h(X \mid Y) = -\int f(x, y) \log f(x \mid y) dx dy
 \]

 It can also be expressed as
 \[
 h(X\mid Y) = h(X, Y) - h(Y)
 \]

• The **Relative entropy** between densities \(f \) and \(g \) is
 \[
 D(f \| g) = \int f(x) \log \frac{f(x)}{g(x)} dx
 \]

• The **mutual information** between \(X \) and \(Y \) is
 \[
 I(X; Y) = \int f(x, y) \log \frac{f(x, y)}{f(x)f(y)} dx dy
 \]

• Note that
 \[
 I(X; Y) = h(X) - h(X \mid Y)
 = h(Y) - h(Y \mid X)
 = D(f(x, y)\|f(x)f(y))
 \]
- Venn diagram of relationship between mutual information and differential entropy.

![Venn Diagram](image)

- **Example:** (Bivariate Gaussian Distribution) Let \((X, Y) \sim N(0, K)\) be jointly Gaussian with mean zero and covariance \(K\) given by

\[
K = \begin{bmatrix}
\sigma^2 & \rho \sigma^2 \\
\rho \sigma^2 & \sigma^2
\end{bmatrix}
\]

- From the previous example, we know that

\[
h(X) = \frac{1}{2} \log(2\pi e \sigma^2), \quad h(Y) = \frac{1}{2} \log(2\pi e \sigma^2)
\]

- Conditioned on \(Y\), the random variable \(X\) has a Gaussian distribution with mean \(\mathbb{E}[X|Y]\) and variance

\[
\text{Var}(X|Y) = \text{Var}(X) - \frac{\text{Cov}^2(X, Y)}{\text{Var}(Y)} = (1 - \rho^2)\sigma^2
\]

Thus, the conditional entropy is

\[
h(X|Y) = \frac{1}{2} \log(2\pi e \sigma^2 (1 - \rho^2))
\]

- Adding these together yields the joint entropy

\[
h(X, Y) = h(X|Y) + h(Y) = \log \left(2\pi e \sigma^2 \sqrt{1 - \rho^2} \right)
\]

- Taking the difference yields the mutual information

\[
I(X; Y) = h(X) - h(X|Y) = -\frac{1}{2} \log(1 - \rho^2) = \frac{1}{2} \log \left(\frac{1}{1 - \rho^2} \right)
\]

- Note that if \(\rho = \pm 1\) then \(X = Y\) and the mutual information is positive infinity!

- **Example:** (Multivariate Gaussian Distribution) Let \(X^n \sim N(0, K)\) be an \(n\)-dimensional Gaussian vector with mean zero and covariance \(K\). The differential entropy of \(X^n\) is given by

\[
h(X^n) = \frac{n}{2} \log \left(2\pi e |K|^{\frac{1}{n}} \right)
\]

where \(|K|\) denotes the determinant of \(K\). Note that \(|K|^{\frac{1}{n}}\) is the geometric mean of the eigenvalues of \(K\).
7.3 Properties of Differential Entropy

- **Lemma:** Differential entropy satisfies:
 - \(h(X + c) = h(X) \)
 - \(h(aX) = h(X) + \log |a| \) for \(a \neq 0 \).
 - \(h(AX) = h(X) + \log |\text{det}(A)| \) when \(A \) is a square matrix.

- **Proof of scaling property for scalar setting.**
 - The differential entropy of a continuous random variable with density \(f_X(x) \) is
 \[
 h(X) = \mathbb{E}[-\log f_X(X)]
 \]
 - For \(a > 0 \), the cdf of \(Y = aX \) is given by
 \[
 F_Y(y) = \mathbb{P}[Y \leq y] = \mathbb{P}[aX \leq y] = F_X(y/a)
 \]
 and thus the density of \(Y \) is
 \[
 f_Y(y) = f_Y'(y) = \frac{d}{dy} F_X(y/a) = \frac{1}{a} f_X(y/a)
 \]
 - As a consequence
 \[
 h(aX) = h(Y)
 = \mathbb{E}[-\log f_Y(Y)]
 = \mathbb{E}[-\log \left(\frac{1}{a} f_X(Y/a) \right)]
 = \mathbb{E}[-\log \left(\frac{1}{a} f_X(Y) \right)]
 = \mathbb{E}[-\log f_X(Y)] + \log a
 = h(X) + \log a
 \]

- **Theorem:** (Gaussian distribution maximizes differential entropy under second moment constraints) The differential entropy of an \(n \)-dimensional vector \(X^n \) with covariance \(K \) is upper bounded by the differential entropy of the multivariate Gaussian distribution with the same covariance,
 \[
 h(X^n) \leq \frac{1}{2} \log((2\pi e)^n |K|)
 \]
 Equality holds if and only if \(X^n \sim N(0, K) \)

- **Proof:**
 - Let \(Y \) be Gaussian with
 \[
 \mathbb{E}[X] = \mathbb{E}[Y], \quad \text{Cov}(Y) = \text{Cov}(X)
 \]
The relative entropy between \(f_X \) and \(f_Y \) obeys

\[
D(f_X \| f_Y) = \mathbb{E} \left[\log \left(\frac{f_X(X)}{f_Y(X)} \right) \right]
\]

\[
= -h(X) + \mathbb{E} \left[\log \left(\frac{1}{f_Y(X)} \right) \right]
\]

\[
= -h(X) + \frac{1}{2} \mathbb{E} \left[(Y - \mathbb{E}[Y])^T \mathbb{C}ov(Y)^{-1} (Y - \mathbb{E}[Y]) \right] + \frac{n}{2} \log(2\pi |K|^{1/n})
\]

\[
= -h(X) + \frac{1}{2} \mathbb{E} \left[\text{tr}((Y - \mathbb{E}[Y])^T \mathbb{C}ov(Y)^{-1} (Y - \mathbb{E}[Y])) \right] + \frac{n}{2} \log(2\pi |K|^{1/n})
\]

\[
= -h(X) + \frac{1}{2} \text{tr}(\mathbb{C}ov(Y)\mathbb{C}ov(Y)^{-1}) + \frac{n}{2} \log(2\pi |K|^{1/n})
\]

\[
= -h(X) + \frac{n}{2} + \frac{n}{2} \log(2\pi |K|^{1/n})
\]

\[
= -h(X) + h(Y)
\]

Since relative entropy is nonnegative, we conclude that

\[
h(X) \leq h(Y)
\]

- **Theorem:** If \(X \to Y \to \hat{X} \) form a Markov chain, then

\[
\mathbb{E} \left[(X - \hat{X})^2 \right] \geq \frac{1}{2\pi e} \exp(2h(X|Y))
\]

- **Proof:**
 - Conditioned on the event \(\{Y = y\} \),

\[
\mathbb{E} \left[(X - \hat{X})^2 \mid Y = y \right] \geq \mathbb{V}ar(X \mid Y = y)
\]

\[
\geq \frac{1}{2\pi e} \exp(2h(X \mid Y = y))
\]

where the second inequality follows from the fact that entropy of \(X \) conditioned on \(Y = y \) is upper bounded by the entropy of Gaussian random variable with the same variance:

\[
h(X|Y = y) \leq \frac{1}{2} \log(2\pi e \mathbb{V}ar(X \mid Y = y))
\]

- Taking expectation of both sides and applying Jensen’s inequality yields the stated result

- **Theorem:** (Entropy Power Inequality) Let \(X \) and \(Y \) be independent \(n \)-dimensional random vectors such that \(h(X) \), \(h(Y) \) and \(h(X + Y) \) exists. Then

\[
e^{\frac{2}{n}h(X + Y)} \geq e^{\frac{2}{n}h(X)} + e^{\frac{2}{n}h(Y)}
\]

Moreover, equality holds if and only if \(X \) and \(Y \) are multivariate Gaussian with proportional covariances.

- There are many different proofs of the entropy power inequality, which are interesting in their own right. The following Lemma is a special case of the EPI that has a simple self-contained proof.
• **Lemma:** Let \(X_1 \) and \(X_2 \) be independent continuous random variables whose distributions are sign invariant (i.e., \(X_i \) and \(-X_i \) have the same distribution). Then,

\[
h\left(\frac{1}{\sqrt{2}} (X_1 + X_2)\right) \geq \frac{1}{2} (h(X_1) + h(X_2))
\]

• **Proof:**

- For any independent random variables \(X_1 \) and \(X_2 \), we have

\[
h(X_1) + h(X_2) = h(X_1, X_2)
\]

\[
= h\left(\frac{1}{\sqrt{2}} (X_1 + X_2), \frac{1}{\sqrt{2}} (X_1 - X_2)\right)
\]

\[
= h\left(\frac{1}{\sqrt{2}} (X_1 + X_2)\right) + h\left(\frac{1}{\sqrt{2}} (X_1 - X_2)\right) - I\left(\frac{1}{\sqrt{2}} (X_1 + X_2); \frac{1}{\sqrt{2}} (X_1 - X_2)\right)
\]

where the second step holds because the linear transformation applied to the vector \((X_1, X_2)\) has determinant one.

- Because of sign invariance, \((X_1 - X_2)\) and \((X_1 + X_2)\) are equal in distribution and thus

\[
h\left(\frac{1}{\sqrt{2}} (X_1 - X_2)\right) = h\left(\frac{1}{\sqrt{2}} (X_1 + X_2)\right).
\]

Combining with the above expression and noting that mutual information is non-negative gives the stated result.

7.4 **Entropic Central Limit Theorem**

- Let \(X_1, X_2, \ldots \) be i.i.d. random variables with mean \(\mu \) and variance \(\sigma^2 \) and let

\[
S_n = \frac{1}{n} \sum_{i=1}^{n} X_i
\]

\[
Z_n = \frac{1}{\sqrt{n}} \sum_{i=1}^{n} (X_i - \mu)
\]

denote the average and normalized average of the first \(n \) terms.

- The **Law of Large Numbers** (LLN) states that \(S_n \) converges almost surely to the mean \(\mu \)

- The **Central Limit Theorem** (CLT) states that \(Z_n \) converges in distribution to Gaussian random variable with mean zero and variance \(\sigma^2 \). In other words, for all \(t \in \mathbb{R} \),

\[
P[Z_n \leq t] \to \int_{-\infty}^{t} \frac{1}{\sqrt{2\pi\sigma^2}} e^{-x^2/(2\sigma^2)} \, dx
\]

- Now suppose that the random variables \(X_1, X_2, \ldots \) are drawn iid from a continuous distribution with finite differential entropy \(h(X_i) \). The entropic CLT states that the entropy of the normalized sum \(Z_n \) converges to the entropy of the Gaussian distribution with mean zero and variance \(\sigma^2 \), i.e.

\[
h(Z_n) \to \frac{1}{2} \log(2\pi e \sigma^2)
\]

Furthermore, if \(\{X_i\} \) are not Gaussian, then the sequence \(h(Z_n) \), is strictly increasing

\[
h(X_1) = h(Z_1) < h(Z_2) < \cdots < h(Z_n) < \frac{1}{2} \log(2\pi \sigma^2).
\]