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5.1 Introduction to Lossless Source Coding

5.1.1 Motivating Example

• Example: Consider assigning binary phone numbers to your friends

friend probability code (i) code (ii) code (iii) code (iv) code (v) code (vi)

Alice 1/4 0011 001101 0 00 0 10
Bob 1/2 0011 001110 1 11 11 0

Carol 1/4 1100 110000 10 10 10 11

• Analysis of codes:

(i) Alice and Bob have same number. Does not work.

(ii) Works, but phone numbers are too long

(iii) Not decodable. ‘10’ could mean Carol, or could mean ‘Bob, Alice’

(iv) Works, but why do we need two zeros for Alice? After first zero it is clear who we want.

(v) Ok, but Alice has a shorter code than Bob

(vi) This is the optimal code. Once you are finished dialing you can be connected immedi-
ately.

• Desirable properties of a code:
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(1) Uniquely decodable.

(2) Efficient, i.e., minimize the average codeword length:

E[`(X)] =
∑
x∈X

p(x)`(x)

where `(x) is the length of the codeword associated with symbol x.

(3) Prefix-free, i.e., no codeword is the prefix of another code

5.1.2 Definitions

• A source code is a mapping C from a source alphabet X to D-ary sequences

◦ D∗ is set of finite-length strings of symbols from D-ary alphabet D = {1, 2, · · · , D}, i.e.

D∗ = D ∪D2 ∪ D3 ∪ · · ·

◦ C(x) ∈ D∗ is the codeword for x ∈ X
◦ `(x) is the length of C(x)

• A code is nonsingular if

x 6= x̃⇒ C(x) 6= C(x̃)

• The extension of the code C is the mapping from finite length strings of X to finite length
strings of D

C(x1x2 · · ·xn︸ ︷︷ ︸
input (source)

) = C(x1)C(x2) · · ·C(xn)︸ ︷︷ ︸
output (code)

• A code C is uniquely decodable if its extension C∗ is nonsingular, i.e., for all m,n,

x1x2 · · ·xm 6= x̃1x̃2 · · · x̃n =⇒ C(x1)C(x2) · · ·C(xm) 6= C(x̃1)C(x̃2) · · ·C(x̃n)

• A code is prefix-free if no codeword is prefixed by another codeword. Such codes are also
known as “prefix” codes or instantaneous codes.

• Venn diagram of instantaneous, uniquely decodable, and nonsingular codes.

instantaneous

nonsingular

uniquely decodable

• Given a distribution p(x) on the input symbol, the goal is to minimize the expected length
per-symbol

E[`(X)] =
∑
x∈X

`(x)p(x)
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5.2 Fundamental Limits of Compression

• This section considers the limits of of lossless compression and proves the following result.

• Theorem: For any source distribution p(x), the expected length E[`(X)] of the optimal
uniquely decodable D-ary code obeys

H(X)

logD
≤ E[`(X)] <

H(X)

logD
+ 1

Furthermore, there exists a prefix-free code which is optimal.

5.2.1 Uniquely Decodable Codes & Kraft Inequality

• Let `(x) be the length function associated with a code C. i.e.,

`(x) is length of codeword C(x) for all x ∈ X

• A code C satisfies the Kraft Inequality if and only if∑
x∈X

D−`(x) ≤ 1 (Kraft Inequality)

• Theorem: Every uniquely decodable code satisfies the Kraft inequality, i.e.,

Uniquely decodable =⇒ Kraft Inequality

• Proof:

◦ Let C be a uniquely decodable source code with length function `(x) and let `max =
maxx∈X `(x) be the length of the longest codeword.

◦ For a source sequence xn, the length of the extended codeword C(xn) is given by

`(xn) =
n∑
i=1

`(xi) ≤ n`max

◦ Let Ak be the number of source sequences of length n for which `(xn) = k, i.e.

Ak = #{xn ∈ X n : `(xn) = k}

◦ Since the code is uniquely decodable, the number of source sequences with codewords of
length k cannot exceed the number of D-ary sequences of length k, an so

Ak ≤ Dk

◦ The extended codeword lengths must obey

∑
xn∈Xn

D−`(x
n) =

n`max∑
k=1

AkD
−k

≤
n`max∑
k=1

DkD−k (since uniquely decodable)

≤ n`max
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◦ The extended codeword lengths must also obey∑
xn∈Xn

D−`(x
n) =

∑
x1∈X

∑
x2∈X

· · ·
∑

xn∈Xn
D−`(x1)D−`(x2) · · ·D−`(xn)

=
∑
x1∈X

D−`(x1)
∑
x2∈X

D−`(x2) × · · · ×
∑
xn∈X

D−`(xn) =

[∑
x∈X

D−`(x)

]n

◦ Combining the above displays shows that[∑
x∈X

D−`(x)

]n
≤ n`max for all n

◦ If the code does not satisfy the Kraft inequality, then the left hand side will blow up
exponentially as n becomes large, and this inequality will be violated. Thus, the code
must satisfy the Kraft inequality.

• Theorem: For any source distribution p(x), the expected codeword length of every D-ary
uniquely decodable code obeys the lower bound

E[`(X)] ≥ H(X)

logD

• Proof:

E[`(X)]− H(X)

logD
=
∑
x

p(x)
[
`(x) + logD p(x)

]
=
∑
x

p(x)
[

logDD
`(x) + logD p(x)

]
=
∑
x

p(x) logD

(
D`(x)p(x)

)
≥
∑
x

p(x) logD(e)

[
1− D−`(x)

p(x)

]
(Fundamental Inq. )

= logD(e)

(
1−

∑
x

D−`(x)

)
≥ 0 (Kraft Inq.)

5.2.2 Codes on Trees

• Any D-ary code can be represented as a D-ary tree.

• A D-ary tree consists of a root with branches, nodes, and leaves. The root and every node
has exactly D children.

• Examples of a binary trees
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A

B

0

C

1

0

0

D

1

1

0

E

0

F

1

0 1

1

nonsingular but not prefix-free

A

0

B

0

C

1

1

0

D

1

0

E

0

F

1

1

prefix-free

• The depth of a leaf (i.e., the number of steps it takes to reach the root) corresponds to the
length of the codeword.

• Lemma: A code is prefix-free if and only if each of its codewords is a leaf.

code is prefix-free ⇐⇒ every codeword is a leaf

5.2.3 Prefix-Free Codes & Kraft Inequality

• Theorem: There exists a prefix-free code with length function `(x) if and only if `(x) satisfies
the Kraft Inequality, i.e.

`(x) is the length function of a prefix-free code ⇐⇒
∑
x

D−`(x) ≤ 1

• Proof of ‘=⇒’

◦ This follows because a prefix-free code is uniquely decodable and the length function of
a uniquely decodable code satisfies the Kraft inequality.

• Proof of ‘⇐=’

◦ Let `(x) be a length function that satisfies the Kraft inequality.

◦ The goal is to create a D-ary tree where the depths of the leaves correspond to `(x).

◦ It suffices to show that, for each integer k, after all codewords of length `(x) < k have
been assigned, there remain enough unpruned nodes on level k to handle codewords with
length `(x) = k.

◦ That is, we need to show that for each k,

Dk −
∑

x:`(x)<k

Dk−`(x)

︸ ︷︷ ︸
no. remaining nodes after assigning short codes

≥ #{x : `(x) = k}︸ ︷︷ ︸
no. needed for codes of length k

◦ The right-hand side can be written as

#{x : `(x) = k} =
∑

x : `(x)=k

Dk−`(x)
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◦ So, to succeed on level k we need

Dk ≥
∑

x : `(x)<k

Dk−`(x) +
∑

x : `(x)=k

Dk−`(x)

◦ Dividing both sides by Dk yields

1 ≥
∑

x : `(x)≤k

D−`(x)

◦ Since the lengths satisfy the Kraft inequality,∑
x : `(x)≤`

D−`(x) ≤
∑
x∈X

D−`(x) ≤ 1

And thus we have shown that there always exist enough remaining nodes to handle the
codewords of length k.

• Theorem: For any source distribution p(x), there exists a D-ary prefix-free code whose
expected length satisfies the upper bound

E[`(X)] <
H(X)

logD
+ 1

• Proof (This proof is nonintuitive, the next section gives an explicit construction)

◦ By the previous theorem, is suffices to show that there exists a length function `(x) that
satisfies the Kraft inequality and the stated inequality.

◦ Consider the length function
`(x) = d− logD p(x)e

where dxe denotes the ceiling function (i.e., round up to the nearest integer). Then

logD

(
1

p(x)

)
≤ `(x) < logD

(
1

p(x)

)
+ 1

◦ Since ∑
x∈X

D−`(x) ≤ DlogD p(x) =
∑
x∈X

p(x) = 1

this length function satisfies the Kraft inequality, and there exists a prefix-free code with
length function `(x).

◦ The expected word length is given by

E[`(X]) = E[d− logD p(X)e] < E
[
logD

(
1

p(X)

)
+ 1

]
=
H(X)

logD
+ 1

5.3 Shannon Code

• We now investigate how to construct codes with nice properties. These include:

◦ short expected code length ⇒ better compression

◦ prefix-free ⇒ can decode instantaneously
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◦ efficient representation ⇒ don’t need huge lookup table for encoding and decoding

• Intuitively, the key idea is to assign shorter codewords to more likely source symbols. The
results of the previous section show that there exists a prefix-free code such that:

◦ The length function `(x) is given by:

`(x) =

⌈
log

(
1

p(x)

)⌉
◦ The expected length obeys

E[`(X)] <
H(X)

logD
+ 1

• In 1948, Shannon proposed a specific way to build this code. The resulting code is also known
as the Shannon–Fano–Elias Code.

• Without loss of generality let the source alphabet be X = {1, 2, · · · ,m}.

• The cumulative distribution function (cdf) of the source distribution is

F (x) =
∑
k≤x

p(k)

0 1 2 3 4 5 6

0.125

0.375

0.600

0.775

0.925

x

F (x)

• Construction of the Shannon Code

◦ For x ∈ {1, 2, · · · ,m}, let F (x) be the midpoint of the interval [F (x− 1), F (x)), i.e.

F (x) =
F (x− 1) + F (x)

2
= F (x− 1) +

p(x)

2

Note that F (x) is a real number between zero and one that uniquely identifies x.

◦ The codeword C(x) corresponds to the D-ary expansion of the real number F (x), trun-
cated at the point where the codeword is unique (i.e. cannot be confused with the
midpoint of any other interval)

C(x) = D-ary expansion of F (x) such that |C(x)− F (x)| < 1

2
p(x) .

If `(x) terms are retained then the codeword is given by

F (x) =

D-ary expansion︷ ︸︸ ︷
0. z1z2 · · · z`(x)︸ ︷︷ ︸

C(x)

z`(x)+1z`(x)+2 · · ·
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• It is sufficient to retain the first `(x) terms where

`(x) =

⌈
logD

(
1

p(x)

)⌉
+ 1

since this implies that

|C(x)− F (x)| ≤ D−`(x) ≤ p(x)

D
≤ 1

2
p(x)

Thus, the expected length of the Shannon code obeys:

E[`(X)] <
H(X)

logD
+ 2

• Example: Consider the following binary Shannon code. The entropy is H(X) ≈ 2.2855
(bits) and the expected length is E[`(X)] = 3.5

x p(x) F (x) F̄ (x) F̄ (x) in binary
⌈
log 1

p(x)

⌉
+ 1 C(x)

1 0.25 0.25 0.125 0.001 3 001
2 0.25 0.5 0.375 0.011 3 011
3 0.2 0.7 0.6 0.10011 4 1001
4 0.15 0.85 0.775 0.1100011 4 1100
5 0.15 1 0925 0.11101100 4 1110

5.4 Huffman Code

• The Shannon code described in the previous section is good, but it is not necessarily optimal.

• Recall that the Kraft inequality is a:

◦ necessary condition for uniquely decodable

◦ sufficient condition for the existence of a prefix-free code

• The search for the optimal code can be states as the following optimization problem. Given
p(x) find a length function `(x) that minimizes the expected length and satisfies the Kraft
inequality:

min
`(·)

∑
x∈X

p(x)`(x) s.t.
∑
x∈X

D−`(x) ≤ 1, `(x) is an integer

• The optimal code was discovered by David Huffman, who was a graduate student in an
information theory course (1952).

• Construction of the Huffman Code

(1) Take the two least probable symbols. These are assigned the longest codewords which
have equal length and differ only in the last digit.

(2) Merge these two symbols into a new symbol with combined probability mass and repeat.
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• Example: Consider the following source distribution.

code x p(x)

0 1 0.4

110 2 0.15

100 3 0.15

101 4 0.1

1110 5 0.1

11110 6 0.05

111110 7 0.04

111111 8 0.01
0.05

0

1

0.1

0

1

0.2

0

1

0.25

0

1

0.35

0

1

0.6
0

1

1

0

1

The entropy is H(X) ≈ 2.45 bits and the expected length is E[`(X)] = 2.55

5.4.1 Optimality of Huffman code

• Let X = {1, 2, · · · ,m} and let `i = `(i), pi = p(i), and Ci = C(i). Without loss of generality,
assume probabilities are in descending order

p1 ≥ p2 ≥ · · · ≥ pm

• Lemma 1: In an optimal code, shorter codewords are assigned large probabilities, i.e.

pi > pj =⇒ `i ≤ `j

• Proof:

◦ Assume otherwise, that is `i > `j and pi > pj . Then, by exchanging these codewords
the expected length will decrease, and thus the code is not optimal.

• Lemma 2: There exists an optimal code for which the codewords assigned to the smallest
probabilities are siblings (i.e., they have the same length and differ only in the last symbol).

• Proof:

◦ Consider any optimal code. By lemma 1, codeword Cm has the longest length. Assume
for the sake of contradiction, its sibling is not a codeword. Then the expected length
can be decreased by moving Cm to its parent. Thus, the code is not optimal and a
contradiction is reached.

◦ Now, we know the sibling of Cm is a codeword. If it is Cm−1, we are done.

◦ Assume it is some Ci for i 6= m− 1 and the code is optimal. By Lemma 1, this implies
pi = pm−1. Therefore, Ci and Cm−1 can be exchanged without changing expected length.

• Theorem: Huffman’s algorithm produces an optimal code tree

• Proof of optimality of Huffman Code

◦ Let `(x) be the length function of the optimal code.

◦ By lemmas 1 and 2, Cm−1 and Cm are siblings and the longest codewords.
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◦ Let p̃1 ≥ p̃2 ≥ · · · ≥ p̃m−1 denote the ordered probabilities after merging pm−1 and pm.
Let ˜̀(x̃) be the length function of resulting code for this new distribution. (Note the
new distribution has support of size m− 1).

◦ Let E[`(X)] be the expected length of the original code and E
[
˜̀(X̃)

]
the expected length

of the reduced code. Then

E[`(X)] = E
[
˜̀(X̃)

]
+ P

[
˜̀(X̃) 6= `(X)

]
︸ ︷︷ ︸

prob of merged symbol

×1 = E
[
˜̀(X̃)

]
+ pm−1 + pm

◦ Thus, `(x) is the length function of an optimal code if an only if ˜̀(x̃) is the length
function of an optimal code.

◦ Therefore, we have reduced the problem to finding and optimal code tree for p̃1, · · · p̃m−1.

◦ Again, merge, and continue the process....

• Thus, the Huffman algorithm yields the optimal code in a greedy fashion (there may be other
optimal codes).

5.5 Coding Over Blocks

• Let X1, X2, · · · be an iid source with finite alphabet |X |. This is known as a discrete
memoryless source

• One issue with symbol codes is that there is a penalty for using integer codeword lengths.

• Example: Suppose that X1, X2, · · · are ∼ iid Bernoulli(p) with p very small.

◦ The optimal code is given by

C(x) =

{
0, x = 0

1, x = 1

◦ The expected length is E[`(X)] = 1 but the entropy obeys

H(X) = Hb(p) ∼ p log(1/p), p→ 0

• We can overcome the integer effects by coding over blocks of inputs symbols.

◦ Group inputs into blocks of size n to create a new source X̃1, X̃2, · · · where

X̃1 = [X1, X2, · · · , Xn]

X̃2 = [Xn+1, Xn+2, · · · , X2n]

...

X̃i = [X(i−1)n+1, X(i−1)n+2, · · · , Xin]

◦ Each length-n vector can be viewed as a “symbol” from the alphabet X̃ = X n. This
new source alphabet has size |X |n.

◦ The new probabilities are given by

p(x̃) =

n∏
k=1

p(x̃k)
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◦ The entropy of the new source distribution is

H(X̃) = H(X1, X2, · · · , Xn) = nH(X)

◦ The expected length of the optimal code for the source distribution p(x̃) obeys

nH(X)︸ ︷︷ ︸
H(X̃)

≤ E
[
`(X̃)

]
< nH(X)︸ ︷︷ ︸

H(X̃)

+1

• To encode the source X1, X2, . . . it is sufficient to encode the new source X̃1, X̃2, . . . . If we
use a prefix-free code, then once the codeword C(X̃1) is received, we can decode X̃1, and thus
recover the first n source symbols X1, . . . , Xn.

◦ The expected codeword length per source symbol is given by the expected codeword
length E[`(X̃)] per block, normalized by the block length. It obeys

H(X) ≤ 1

n
E[`(X̃)] < H(X) +

1

n

Thus, the integer effects are negligible as we increase the block length!.

◦ However, by coding over an input block of length n we have introduced delay in the
system.

◦ Furthermore, we have increased the complexity of the code.

5.6 Coding with Unknown Distributions

5.6.1 Minimax Redundancy

• Suppose X is drawn according to a distribution pθ(x) with unknown parameter θ belonging
to set Θ.

• If θ is known, then we can construct a code that achieves the optimal expected length∑
x

pθ(x)`(x) = H(pθ)

• The redundancy of coding a distribution p with the optimal code for a distribution q (i.e.,
`(x) = − log q(x)) is given by

R(p, q) =

actual length︷ ︸︸ ︷∑
x

p(x)`(x)−
optimal length︷ ︸︸ ︷

H(p)

=
∑
x

p(x)

(
log

(
1

q(x)

)
− log

(
1

p(x)

))
=
∑
x

p(x) log

(
p(x)

q(x)

)
= D(p||q)

• The minimax redundancy is defined by

R∗ = min
q

max
θ∈Θ

R(pθ, q) = min
q

max
θ∈Θ

D(pθ||q)
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• Intuitively, the distribution q that leads to a code minimizing the minimax redundancy is the
distribution at the center of the “information ball” of radius R∗.

• Minimax Theorem: Let f(x, y) be a continuous function that is convex in x and concave
in y, and let X and Y be compact convex sets. Then:

min
x∈X

max
y∈Y

f(x, y) = max
y∈Y

min
x∈X

f(x, y)

This is a classic result in game theory. There are many extensions, such as Sion’s minimax
theorem, which applies when f(x, y) is quasi-convex-concave and at least one of the sets is
compact.

• Recall that D(p||q) is convex in the pair (p, q), i.e., for all λ ∈ [0, 1],

D(λp1 + (1− λ)p2 ||λq1 + (1− λ)q2) ≤ λD(p1||q1) + (1− λ)D(p2||q2)

• Let Π be the set of all distributions on θ. Note that Π is a convex set, i.e., for all λ ∈ [0, 1],

π1, π2 ∈ Π =⇒ λπ1 + (1− λ)π2 ∈ Π

• Lemma: The maximum over R(pθ, q) with respect to θ ∈ Θ is equal to the maximum over
π ∈ Π of the expectation with respect to π.

max
θ∈Θ

D(pθ||q) = max
π∈Π

∑
θ∈Θ

π(θ)D(pθ||q)︸ ︷︷ ︸
expectation with respect to π

This lemma follows from the fact that the maximum of a convex function over a convex set
is attained at an extreme point of the set. We provide a simple proof below.

◦ Proof of less than or equal: Let δθ0 denote the distribution that has probability one
at θ0 and note that

D(pθ0 ||q) =
∑
θ∈Θ

δθ0(θ)D(pθ||q)︸ ︷︷ ︸
expectation with respect to δθ

Therefore, maximizing over θ is equivalent to maximizing over the expectation with
respect to distributions in the set Π̃ = {δθ : θ ∈ Θ}. Hence,

max
θ∈Θ

D(pθ||q) = max
π∈Π̃

∑
θ∈Θ

π(θ)D(pθ||q) ≤ max
π∈Π

∑
θ∈Θ

π(θ)D(pθ||q)

where the inequality holds because Π̃ is a subset of Π.
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◦ Proof of greater than or equal: Let θ∗ be a value that attains the maximum of
D(pθ||q). Note that for every π ∈ Π we have∑

θ∈Θ

π(θ)D(pθ||q) ≤
∑
θ∈Θ

π(θ)D(pθ∗ ||q) = D(pθ∗ ||q) = max
θ∈Θ

D(pθ||q)

Taking the maximum of the left-hand side with respect to π in Π yields the stated
inequality.

• This means that the minimax redundancy can be expressed equivalently as

R∗ = min
q

max
π∈Π

∑
θ∈Θ

π(θ)D(pθ||q)

Note that the objective is linear (and hence both convex and concave) in π and convex in q.
Applying the minimax theorem yields:

R∗ = max
π∈Π

min
q

∑
θ∈Θ

π(θ)D(pθ||q)

• For each distribution π we want to find the optimal distribution q. As an educated guess,
consider the distribution induced on x by pθ when θ is drawn according to π i.e.

qπ(x) =
∑
θ∈Θ

π(θ)pθ(x)

To see that qπ achieves the minimum, observe that for any q, we can write∑
θ

π(θ)D(pθ||q) =
∑
θ

π(θ)D(pθ||q)−D(qπ||q) +D(qπ||q)

=
∑
θ

∑
x

π(θ)pθ(x) log

(
pθ(x)

q(x)

)
−
∑
x

(∑
θ

π(θ)pθ(x)

)
︸ ︷︷ ︸

qπ(x)

log

(
qπ(x)

q(x)

)
+D(qπ||q)

=
∑
θ

∑
x

π(θ)pθ(x)

[
log

(
p(x)

q(x)

)
− log

(
qπ(x)

q(x)

)]
+D(qπ||q)

=
∑
θ

∑
x

π(θ)pθ(x) log

(
pθ(x)

qπ(x)

)
+D(qπ||q)

Note that the first term on the right-hand side does not depend on q. Since D(qπ||q) is
nonnegative and equal to zero if and only if q = qπ, we see that qπ is the unique minimizer.

• To make the expression more interpretable, consider the notation

p(θ) = π(θ), p(x | θ) = pθ(x), p(x) = qπ(x)

Then, we have shown that the minimax redundancy can be expressed as

R∗ = max
p(θ)

∑
θ

∑
x

p(θ)p(x|θ) log

(
p(x|θ))
p(x)

)
= max

p(θ)
I(θ;X)
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• Theorem: The minimax redundancy is equal to the maximum mutual information between
the the parameter θ and the source X

• In other words, the code that minimizes the minimax redundancy has length function `(x) =
− log p(x) where p(x) is the distribution of X ∼ p(x|θ) when θ is drawn according to the
distribution that maximizes the mutual information I(θ;X).

5.6.2 Coding with Unknown Alphabet

• We want to compress integers x ∈ N = {1, 2, 3, . . . } without specifying a probability distri-
bution.

c(x) =??

• First consider the setting where we have an upper bound N on the integer, and thus X =
{1, 2, · · · , N}. We can simply send dlogNe bits. For example, N = 8, then we send three
bits per integer:

3, 7 =⇒ c(3)c(7) = 011︸︷︷︸
3

111︸︷︷︸
7

• To analyze minimax redundancy of this approach, consider the set of distributions:

pθ(x) =

{
1, x = θ

0, x 6= θ
, X = Θ = {1, 2, · · · , N},

The minimax redundancy is given by

R∗ = max
p(θ)

I(θ;X) = max
p(x)

H(X) = logN

since the uniform distribution maximizes entropy on a finite set.

• But we want the code to be universal and work for any integer.

• A unary code sends a sequence of x−1 ‘0’s followed by a ‘1’ to mark the end of the codeword.
For example,

3, 7 =⇒ c(3)c(7) = 001︸︷︷︸
3

0000001︸ ︷︷ ︸
7

• The unary code requires x bits to represent each symbol. This seems wasteful.

• Idea: First use a unary code to describe how many bits are needed for the binary code, and
then send the binary code,

cuniversal(x) = (cunary(`binary(x)), cbinary(x))

• For example, suppose we want to compress 9:

◦ The binary code is cbinary(9) = 1001

◦ The length of the binary code is `binary(9) = 4

◦ So the universal code is
cuniversal(9) = 0001︸︷︷︸

header

1001︸︷︷︸
number

• This universal code requires dlog2(x)e+ dlog2(x)e = 2dlog2(x)e bits.
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• In fact, we can do better by repeating the process to first compress universal code using itself!

c
(2)
universal(x) =

(
c

(1)
univeral(`binary(x)), cbinary(x)

)
The number of bits this scheme requires obeys

`
(2)
universal(x) = dlog2(x)e+ 2dlog2(dlog2(x)e)e

≤ log2(x) + 2 log2(log2(x)) + 4

• It is interesting to note that this length function obeys the Kraft inequality. Thus, the length
function may be viewed as a universal prior

puniversal(x) = 2−`
(2)
universal(x) ≈ 1

x(log(x))2

Recall that
∑

n≥1 1/(n log n)p diverges for p = 1 but converges for p > 1.

• It is also interesting to note that the entropy of this distribution is infinite,

H(puniversal) =
∞∑
x=1

1

x(log(x))2
log(x log(x)2) = +∞

• In this case, we have θ = X and so the minimax redundancy corresponds to a distribution
which maximizes I(X;X) = H(X).

5.6.3 Lempel-Ziv Code

• Lempel-Ziv (LZ) codes are a key component of many moderns data compression algorithms,
including:

◦ compress, gzip, pkzip, ZIP file format

◦ Graphics Interchange Format (GIF)

◦ Portable Document Format (PDF)

• Basic idea: Compress string using reference to its past. The more redundant the string, the
better this process works.

• Roughly speaking, Lempel-Ziv codes are optimal in two senses:

(1) They approach the entropy rate if the source is generated from a stationary and ergodic
distribution.

(2) They are competitive against all possible finite-state machines

• Two different variations, LZ 77 and LZ 78. The gzip algorithm using LZ ’77 followed by a
Huffman code.

• Construction of Lempel-Ziv code:

◦ Input: a string of source symbols x1x2x3, · · ·
◦ Output: sequence of code words: c(x1)c(x2)c(x3) · · ·
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◦ Assume that we have compressed the string from x1 to xi−1. The goal is to find the
longest possible match between the next symbols and a sequence in the previous se-
quence. In other words, we want to find the largest integer k such that

xixi+1 . . . xi+k︸ ︷︷ ︸
new bits

= xjxj+1 . . . xj+k︸ ︷︷ ︸
previous bits

for some j ≤ i− 1

◦ Thus, this matching phrase can be represented by a pointer to index i− j and its length
k. For convenience,

◦ If no match is found, we send the next symbol uncompressed. Use a flag to distinguish
the two cases:

∗ Find a match =⇒ send (1, pointer, length)

∗ No match =⇒ send (0, xi)

• Example: Compress the following sequence with window size W = 4

ABBABBBAABBBA

Parsed String:

A,B,B,ABB,BA,ABBBA

Output:

(0, A), (0, B), (1, 1, 1), (1, 3, 3), (1, 4, 2), (1, 5, 5)

• Theorem: If a process X1, X2, . . . is stationary and ergodic, then the per-symbol expected
codeword length of the Lempel-Ziv code asymptotically achieves the entropy rate of the
source.

• Proof sketch:

◦ Assume infinite window size.

◦ Assume that we only consider matches of exactly length m, and that the sequence has
been running long enough that all possible strings of length n have occurred previously.

◦ Given a new sequence of length n, how far back in time must we look to find a match?
The return time is defined by:

Rn(X1, X2, . . . , Xn) = min
{
j ≥ 1 : X1−j , X2−j , . . . , Xn−j = X1, X2, . . . , Xn

}
◦ Using universal integer code, can describe Rn with log2Rn + 2 log2 log2Rn + 4 bits.

◦ Thus, the expected per-symbol length of our code is given by

1

n
E[log2Rn + 2 log2 log2Rn + 4]

◦ Observe that if the sequence is iid, then the return time of a sequence of xn1 is geomet-
rically distributed with probability p(xn1 ), and thus the expected wait time is

E[Rn(Xn
1 ) | Xn

1 = xn1 ] =
1

p(xn1 )
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◦ Kac’s Lemma: If X1, X2, . . . is a stationary ergodic processes, then

E[Rn(Xn
1 ) | Xn

1 = xn1 ] =
1

p(xn1 )

◦ To conclude proof, we use Jensen’s inequality:

E[logRn] = EXn
1

[E[log(Rn(Xn
1 )) | Xn

1 ]]

≤ EXn
1

[log(E[log(Rn(Xn
1 )) | Xn

1 ])]

= EXn
1

[
log

(
1

p(Xn
1 )

)]
= H(X1, . . . , Xn)

◦ By the AEP for stationary ergodic processes,

H(X1, . . . , Xn)

n
→ H(X )
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