2.1 Quantifying Information

- How much “information” do the answers to the following questions provide?

 (i) Will it rain today in Durham? (two possible answers)
 (ii) Will it rain today in Death Valley? (two possible answers)
 (iii) What is today’s winning lottery number? (for the Mega Millions Jackpot, there are 258,890,850 possible answers)

- The amount of “information” is linked to the number of possible answers. In 1928, Ralph Hartley gave the following definition:
 \[
 \text{Hartley Information} = \log \# \text{ answers}
 \]

- Hartley’s measure of information is additive. The number of possible answers for two questions corresponds to the **product** of the number of answers for each question. Taking the logarithm turns the product into a sum.

- **Example:** Two questions

 - What is today’s winning lottery number?
 \[
 \log_2(258890850) \approx 28\text{(bits)}
 \]

 - What are the winning lottery numbers for today and tomorrow?
 \[
 \log_2(258890850 \times 258890850) = \log_2(258890850) + \log_2(258890850) \approx 56\text{(bits)}
 \]
• But Hartley’s information does not distinguish between likely and unlikely answers (e.g. rain in Durham vs. rain in Death Valley).

• In 1948, Shannon introduced measures of information which depend on the \textit{probabilities} of the answers.

\section*{2.2 Entropy and Mutual Information}

\subsection*{2.2.1 Entropy}

• Let X be a discrete random variable with pmf $p(x)$ and finite support \mathcal{X}.

• The \textbf{entropy} of X is defined as

$$H(X) = \sum_{x \in \mathcal{X}} p(x) \log \left(\frac{1}{p(x)} \right)$$

• Entropy can also be expressed as the expected value of the random variable $\log 1/p(X)$,

$$H(X) = E \left[\log \left(\frac{1}{p(X)} \right) \right], \; X \sim p(x)$$

• \textbf{Binary Entropy:} If X is a Bernoulli(p) random variable (i.e. $P[X = 1] = p$ and $P[X = 0] = 1 - p$), then its entropy is given by the binary entropy function

$$H_b(p) = -p \log p - (1 - p) \log(1 - p)$$

• The binary entropy function $H_b(p)$ is a concave. The maximum is $H_b(1/2) = \log(2)$ and has minimum is $H_b(0) = H_b(1) = 0$.

• \textbf{Example:} Two Questions

 - Will it rain Today in Durham?

 $$H_b \left(\frac{104}{365} \right) \approx 0.862 \text{ bits}$$

 - Will it rain Today in Death Valley?

 $$H_b \left(\frac{1}{365} \right) \approx 0.027 \text{ bits}$$
- **Fundamental Inequality:** For any base $b > 0$ and $x > 0$,
\[
\left(1 - \frac{1}{x}\right) \log_b(e) \leq \log_b(x) \leq (x - 1) \log_b(e)
\]
with equalities on both sides if, and only if, $x = 1$. For the natural log, this simplifies to
\[
\left(1 - \frac{1}{x}\right) \leq \ln(x) \leq (x - 1)
\]

- **Proof of upper bound:**
\[
x \in (0, \infty) \implies (x - 1) - \ln(x) = \int_1^x \left(1 - \frac{1}{u}\right) \, du > 0
\]
\[
x \in (0, 1) \implies (x - 1) - \ln(x) = \int_x^1 \left(1 - \frac{1}{u}\right) \, du > 0
\]

- **Proof of lower bound:** Let $y = 1/x$ and apply upper bound
\[
\ln(y) \leq y - 1 \iff 1 - y \leq \ln\left(\frac{1}{y}\right) \iff 1 - \frac{1}{x} \leq \ln(x)
\]

- **Theorem:** Entropy satisfies
\[
0 \leq H(X) \leq \log |\mathcal{X}|
\]

- **Proof of lower bound:** Note that $p(x) \leq 1$ and so $\log 1/p(x) \geq 0$.

- **Proof of upper bound:**
\[
\sum_x p(x) \log \frac{1}{p(x)} = \sum_x p(x) \log \left(\frac{|\mathcal{X}|}{p(x)|\mathcal{X}|}\right)
\]
\[
= \log(|\mathcal{X}|) + \sum_x p(x) \log \left(\frac{1}{p(x)|\mathcal{X}|}\right)
\]
\[
\leq \log(|\mathcal{X}|) + \sum_x p(x) \log(e) \left(\frac{1}{p(x)|\mathcal{X}|} - 1\right) \quad \text{Fundamental Inq.}
\]
\[
= \log(|\mathcal{X}|) + \log(e) - \log(e)
\]
\[
= \log(|\mathcal{X}|)
\]

- The entropy of an n-dimensional random vector $X = (X_1, X_2, \ldots, X_n)$ with pmf $p(x)$ is defined as
\[
H(X) = H(X_1, X_2, \ldots, X_n) = \sum_{x \in \mathcal{X}} p(x) \log \left(\frac{1}{p(x)}\right)
\]

- The **joint entropy** of random variables X and Y is simply the entropy of the vector (X, Y)
\[
H(X, Y) = \sum_{x \in \mathcal{X}} \sum_{y \in \mathcal{Y}} p(x, y) \log \left(\frac{1}{p(x, y)}\right)
\]
• **Conditional Entropy**: The entropy of a random variable Y conditioned on the event $\{X = x\}$ is a function of the conditional distribution $p_{Y|X}(\cdot | x)$ and is given by:

$$H(Y | X = x) = \sum_{y \in Y} p(y | x) \log \left(\frac{1}{p(y | x)} \right)$$

The conditional entropy of Y given X is a function of the joint distribution $p(x, y)$:

$$H(Y | X) = \sum_{x \in X} p(x) H(Y | X = x) = \sum_{x,y} p(x, y) \log \left(\frac{1}{p(y | x)} \right)$$

• **Warning**: Note that $H(Y | X)$ is not a random variable! This is differs from the usual convention for conditioning where, for example, $E[Y | X]$ is a random variable.

• **Chain Rule**: The joint entropy of X and Y can be decomposed as

$$H(X, Y) = H(X) + H(Y | X)$$

and more generally,

$$H(X_1, X_2, \cdots, X_n) = \sum_{i=1}^{n} H(X_i | X_{i-1}, \cdots, X_1)$$

• **Proof of chain rule**:

$$H(X; Y) = \sum_{x,y} p(x, y) \log \left(\frac{1}{p(x, y)} \right)$$

$$= \sum_{x,y} p(x, y) \log \left(\frac{1}{p(x)} \frac{1}{p(y | x)} \right)$$

$$= \sum_{x,y} p(x, y) \left[\log \left(\frac{1}{p(x)} \right) + \log \left(\frac{1}{p(y | x)} \right) \right]$$

$$= H(X) + H(Y | X)$$

2.2.2 Mutual Information

• **Mutual information** is a measure of the amount of information that one random variable contains about another random variable

$$I(X; Y) = \sum_{x \in X} \sum_{y \in Y} p(x, y) \log \left(\frac{p(x, y)}{p(x)p(y)} \right)$$

• Mutual information can be expressed as the amount by which knowledge of X reduces the entropy of Y:

$$I(X; Y) = H(Y) - H(Y | X)$$

$$I(X; Y) = H(X) - H(X | Y)$$
• Proof:
\[
\sum_{x \in X} \sum_{y \in Y} p(x, y) \log \left(\frac{p(x, y)}{p(x)p(y)} \right) = \sum_{x \in X} \sum_{y \in Y} p(x, y) \left[\log \left(\frac{1}{p(y)} \right) - \log \left(\frac{1}{p(y \mid x)} \right) \right]
\]
\[
= \sum_{x \in X} \sum_{y \in Y} p(x, y) \log \left(\frac{1}{p(y)} \right) - \sum_{x \in X} \sum_{y \in Y} p(x, y) \log \left(\frac{1}{p(y \mid x)} \right)
\]

• Venn diagram of entropy, conditional entropy, and mutual information

\begin{align*}
H(X) & \quad H(Y) \\
H(X \mid Y) & \quad I(X; Y) \quad H(Y \mid X)
\end{align*}

• The conditional mutual information between X and Y given Z is
\[
I(X; Y \mid Z) = \sum_{x, y, z} p(x, y, z) \log \left(\frac{p(x, y \mid z)}{p(x \mid z)p(y \mid z)} \right)
\]

• Chain Rule for mutual information:
\[
I(X; Y_1, Y_2) = I(X; Y_1) + I(X; Y_2 \mid Y_1)
\]
and more generally
\[
I(X; Y_1, Y_2, \ldots, Y_n) = \sum_{i=1}^{n} I(X; Y_i \mid Y_1, Y_2, \ldots, Y_{k-1})
\]

2.2.3 Example: Testing for a disease

There is a 1% chance I have a certain disease. There exists a test for this disease which is 90% accurate (i.e. $P[\text{test is pos} \mid \text{I have disease}] = P[\text{test is neg} \mid \text{I don’t have disease}] = 0.9$). Let
\[
X = \begin{cases}
1, & \text{I have disease} \\
0, & \text{I don’t have disease}
\end{cases}
\]
and
\[
Y_i = \begin{cases}
1, & \text{ith test is positive} \\
0, & \text{ith test is negative}
\end{cases}
\]

Assume the test outcomes $Y = (Y_1, Y_2)$ are conditionally independent given X.

• The probability mass functions can be computed as
\[
\begin{array}{c|cccc}
 p(x, y) & y = (0, 0) & y = (0, 1) & y = (1, 0) & y = (1, 1) \\
\hline
 x = 0 & 0.8019 & 0.0891 & 0.0891 & 0.0099 \\
 x = 1 & 0.0001 & 0.0009 & 0.0009 & 0.0081
\end{array}
\]
and

<table>
<thead>
<tr>
<th></th>
<th>(p(x))</th>
<th>(y = (0, 0))</th>
<th>(p(y))</th>
<th>(y_1 = 0)</th>
<th>(p(y_1))</th>
</tr>
</thead>
<tbody>
<tr>
<td>(x = 0)</td>
<td>0.99</td>
<td></td>
<td>0.8020</td>
<td></td>
<td>0.8920</td>
</tr>
<tr>
<td>(x = 1)</td>
<td>0.01</td>
<td></td>
<td>0.0900</td>
<td></td>
<td>0.1080</td>
</tr>
</tbody>
</table>

- The individual entropies are
 \[
 H(X) = H_b(0.01) \approx 0.0808 \\
 H(Y_1) = H(Y_2) = H_b(0.1080) \approx 0.4939
 \]

- The conditional entropy of \(X \) given \(Y_1 \) is computed as follows:
 \[
 H(X|Y_1 = 1) = H_b(0.9167) \approx 0.4137 \\
 H(X|Y_1 = 0) = H_b(0.0011) \approx 0.0126
 \]
 and so
 \[
 H(X|Y) = P[Y_1 = 1]H(X|Y_1 = 1) + P[Y = 0]H(X|Y_1 = 0) \approx 0.0559
 \]

- The mutual information is
 \[
 I(X; Y_1) = H(X) - H(X|Y_1) \approx 0.0249 \\
 I(X; Y_1, Y_2) = H(X) - H(X|Y_1, Y_2) \approx 0.0469
 \]

- The conditional mutual information is
 \[
 I(X; Y_2|Y_1) = H(X|Y_1) - H(X|Y_1, Y_2) \approx 0.0220
 \]

2.2.4 Relative Entropy

- The relative entropy between a distributions \(p \) and \(q \) is defined by
 \[
 D(p \parallel q) = \sum_{x \in X} p(x) \log \left(\frac{p(x)}{q(x)} \right)
 \]
 This is also known as the Kullback-Leibler divergence. It can be expressed as the expectation of the expectation of the log likelihood ratio
 \[
 D(p \parallel q) = E[A(X)], \quad X \sim p, \quad A(x) = \log \left(\frac{p(x)}{q(x)} \right)
 \]
 - Note that if there exists \(x \) such that \(p(x) > 0 \) and \(q(x) = 0 \), then \(D(p \parallel q) = \infty \).
 - **Warning:** \(D(p \parallel q) \) is not a metric since it is not symmetric and it does not satisfy the triangle inequality.
 - Mutual information between \(X \) and \(Y \) is equal to the relative entropy between \(p_{X,Y}(x, y) \) and \(p_X(x)p_Y(y) \),
 \[
 I(X; Y) = D(p_{X,Y}(x, y) \parallel p_X(x)p_Y(y))
 \]
• **Theorem:** Relative entropy is nonnegative, i.e. $D(p \parallel q) \geq 0$. It is equal to zero if and only if $p = q$.

• **Proof:**

$$-D(p \parallel q) = \sum_x p(x) \log \frac{q(x)}{p(x)}$$

$$\leq \sum_x p(x) \log(e) \left(\frac{q(x)}{p(x)} - 1 \right) \quad \text{Fundamental Inq.}$$

$$= \log(e) \sum_x q(x) - \log(e) \sum_x p(x)$$

$$= 0$$

• Important consequences of the non-negativity of relative entropy:

 o Mutual information is nonnegative, $I(X;Y) \geq 0$, with equality if and only if X and Y are independent.

 o This means that $H(X) - H(X|Y) \geq 0$, and thus **conditioning cannot increase entropy**, $H(X|Y) \leq H(X)$

 o **Warning:** Although conditioning cannot increase entropy (in expectation), it is possible that the entropy of X conditioned on a specific event, say $\{Y = y\}$, is greater than $H(X)$, i.e. $H(X|Y = y) > H(X)$.

2.3 Convexity & Concavity

• A function $f(x)$ is convex over an interval $(a,b) \subseteq \mathbb{R}$ if for every $x_1, x_2 \in (a,b)$ and $0 \leq \lambda \leq 1$,

$$f(\lambda x_1 + (1-\lambda)x_2) \leq \lambda f(x_1) + (1-\lambda)f(x_2).$$

The function is strictly convex if equality holds only if $\lambda = 0$ or $\lambda = 1$.

• Illustration of convexity. Let $x^* = \lambda x_1 + (1-\lambda)x_2$

• **Theorem:** $H(X)$ is a concave function $p(x)$, i.e.

$$H(\lambda p_1 + (1-\lambda)p_2) \geq \lambda H(p_1) + (1-\lambda)H(p_2)$$

 o This can be proved using the fundamental inequality (try it yourself)
Here is an alternative proof which uses the fact that conditioning cannot increase entropy. Let Z be Bernoulli(λ) and let

$$X \sim \begin{cases} p_1, & Z = 1 \\ p_2, & Z = 0 \end{cases}$$

Then,

$$H(X) = H(\lambda p_1 + (1 - \lambda)p_2)$$

Since conditioning cannot increase entropy,

$$H(X) \geq H(X | Z) = \lambda H(X | Z = 1) + (1 - \lambda)H(X | Z = 0).$$

Combining the displays completes the proof.

- **Jensen’s Inequality**: If f is a convex function over an interval I and X is a random variable with support $\mathcal{X} \subset I$ then

 $$\mathbb{E}[f(X)] \geq f(\mathbb{E}[X])$$

 Moreover, if f is strictly convex, equality occurs if and only if $X = \mathbb{E}[X]$ is a constant.

- A proof of Jensen’s Inequality is given in [C&T]

- **Example**: For any set of positive numbers $\{x_i\}_{i=1}^n$, the geometric mean is no greater than the arithmetic mean:

 $$\left(\prod_{i=1}^n x_i \right)^{1/n} \leq \frac{1}{n} \sum_{i=1}^n x_i$$

 Proof: Let Z be uniformly distributed on $\{x_i\}$ so that $\mathbb{P}[Z = x_i] = 1/n$. By Jensen’s inequality,

 $$\log \left(\prod_{i=1}^n x_i \right)^{1/n} = \frac{1}{n} \sum_{i=1}^n \log x_i = \mathbb{E}[\log(Z)] \leq \log(\mathbb{E}[Z]) = \log \left(\frac{1}{n} \sum_{i=1}^n x_i \right)$$

2.4 Data Processing Inequality

- **Markov Chain**: Random variables X, Y, Z form a Markov chain, denoted

 $$X \to Y \to Z$$

 if X and Z are independent conditioned on Y.

 $$p(x, z | y) = p(x | y)p(z | y)$$

 - alternatively

 $$p(x, y, z) = p(x)p(y, z | x)$$
 always true
 $$= p(x)p(y | x)p(z | x, y)$$
 always true
 $$= p(x)p(y | x)p(z | y)$$
 if Markov chain

 - Note $X \to Y \to Z$ implies $Z \to Y \to X$

 - If $Z = f(Y)$ then $X \to Y \to Z$.
• **Theorem:** (Data Processing Inequality) If $X \to Y \to Z$, then

$$I(X;Y) \geq I(X;Z)$$

• In particular, for any function g defined on Y, we have $X \to Y \to g(Y)$ and so

$$I(X;Y) \geq I(X;g(Y)).$$

No clever manipulation of Y can increase the mutual information!

• **Proof:** By chain rule, we can expand mutual information two different ways:

$$I(X;Y,Z) = I(X;Z) + I(X;Y | Z)$$

$$= I(X;Y) + I(X;Z | Y)$$

Since X and Z are conditionally independent given Y, we have $I(X;Z | Y) = 0$. Since $I(X;Y | Z) \geq 0$, we have

$$I(X;Y) \geq I(X;Z)$$

2.5 Fano’s Inequality

• Suppose we want to estimate a random variable X from an observation Y.

• The probability of error for an estimator $\hat{X} = \phi(Y)$ is

$$P_e = P[\hat{X} \neq X]$$

• **Theorem:** (Fano’s Inequality) For any estimator \hat{X} such that $X \to Y \to \hat{X}$,

$$H_0(P_e) + P_e \log(|\mathcal{X}|) \geq H(X | Y)$$

and thus

$$P_e \geq \frac{H(X | Y) - \log 2}{\log(|\mathcal{X}|)}$$

• **Remark:** Fano’s Inequality provides a lower bound on P_e for any possible function of Y!

• **Proof of Fano’s inequality:**

 • Let E be a random variable that indicates whether an error has occurred:

 $$E = \begin{cases}
 1, & \hat{X} = X \\
 0, & \hat{X} \neq X
 \end{cases}$$

 • By the chain rule, the entropy of (E,X) given \hat{X} can be expanded two different ways

 $$H(E, X | \hat{X}) = H(X | \hat{X}) + H(E | X, \hat{X})$$

 $$\leq H_0(P_e) + P_e \log(|\mathcal{X}|)$$

 • $H(X | \hat{X}) \geq H(X | Y)$ by the data processing inequality,
\(H(E \mid X, \hat{X}) = 0 \) because \(E \) is a deterministic function of \(X \) and \(\hat{X} \).

\(H(E \mid \hat{X}) \leq H(E) = H_b(P_e) \) since conditioning cannot increase entropy.

Furthermore,
\[
H(X \mid E, \hat{X}) = \mathbb{P}[E = 1] H(X \mid \hat{X}, E = 1) + \mathbb{P}[E = 0] H(X \mid \hat{X}, E = 0) \]

Putting everything together proves the desire result.

2.6 Summary of Basic Inequalities

- **Jensen’s Inequality:**
 - If \(f \) is a convex function then
 \[
 \mathbb{E}[f(X)] \geq f(\mathbb{E}[X])
 \]
 - If \(f \) is a concave function then
 \[
 \mathbb{E}[f(X)] \leq f(\mathbb{E}[X])
 \]

- **Data Processing Inequality:** If \(X \to Y \to Z \) form a Markov chain, then
 \[
 I(X; Y) \geq I(X; Z)
 \]

- **Fano’s Inequality:** If \(X \to Y \to \hat{X} \) forms a Markov chain, then
 \[
 \mathbb{P}[X \neq \hat{X}] \geq \frac{H(X \mid Y) - \log 2}{\log(|\mathcal{X}|)}
 \]

2.7 Axiomatic Derivation of Mutual Information [Optional]

This section is based on lecture notes from Toby Berger.

- Let \(X, Y \) denote discrete random variables with respective alphabets \(\mathcal{X} \) and \(\mathcal{Y} \).
 (Assume \(|\mathcal{X}| < \infty \) and \(|\mathcal{Y}| < \infty \).)
- Let \(i(x, y) \) be the amount of information about event \(\{X = x\} \) conveyed by learning \(\{Y = y\} \)
- Let \(i(x, y \mid z) \) be the amount of information about event \(\{X = x\} \) conveyed by learning \(\{Y = y\} \)
 conditioned on the event \(\{Z = z\} \)
- Consider the four postulates:
 - **Bayesianness:** \(i(x, y) \) depends only on \(p(x, y) \), i.e.
 \[
 i(x, y) = f(\alpha, \beta) \bigg|_{\alpha = p(x)}^{\beta = p(x \mid y)}
 \]
 for some function \(f : [0, 1]^2 \to \mathbb{R} \).
 - **Smoothness:** partial derivatives of \(f(\cdot, \cdot) \) exist.
 \[
 f_1(\alpha, \beta) = \frac{\partial f(\alpha, \beta)}{\partial \alpha}, \quad f_2(\alpha, \beta) = \frac{\partial f(\alpha, \beta)}{\partial \beta}
 \]
(C) **successive revelation:** Let \(y = (w, z) \). Then

\[
i(x, y) = i(x, w) + i(x, z|w)
\]

where \(i(x, w) = f(p(x), p(x|w)) \) and \(i(x, z|w) = f(p(x|w), p(x|z, w)) \) and so the function \(f(\cdot, \cdot) \) must obey

\[
f(\alpha, \gamma) = f(\alpha, \beta) + f(\beta, \gamma), \quad 0 \leq \alpha, \beta, \gamma \leq 1
\]

(D) **Additivity:** If \((X, Y)\) and \((U, V)\) are independent, i.e. \(p(x, y, u, v) = p(x, y)p(u, v) \), then

\[
i((x, u), (y, v)) = i(x, y) + i(u, v)
\]

where \(i(x, u) = f(p(x, u)p(x, y|u), p(x|y)p(u|v)) \) and so the function \(f(\cdot, \cdot) \) must obey

\[
f(\alpha \gamma, \beta \delta) = f(\alpha, \beta) + f(\gamma, \delta) \quad 0 \leq \alpha, \beta, \gamma, \delta \leq 1
\]

- **Theorem:** The function

\[
i(x, y) = \log \left(\frac{p(x, y)}{p(x)p(y)} \right)
\]

is the only function which satisfies our four postulates above.

2.7.1 Proof of uniqueness of \(i(x, y) \)

- Because of B, we can apply \(\frac{\partial}{\partial \beta} \) to left and right sides of C

\[
0 = f_2(\alpha, \beta) + f_1(\beta, \gamma) \quad \implies \quad f_2(\alpha, \beta) = -f_1(\beta, \gamma)
\]

Thus \(f_2(\alpha, \beta) \) must be a function only of \(\beta \), say \(g'(\beta) \). Integrating w.r.t. \(\beta \) gives

\[
\int f_2(\alpha, \beta) d\beta = f(\alpha, \beta) + c(\alpha)
\]

i.e.

\[
\int g'(\beta) d\beta = g(\beta) = f(\alpha, \beta) + c(\alpha)
\]

and so

\[
f(\alpha, \beta) = g(\beta) - c(\alpha)
\]

- Put this back into C

\[
f(\alpha, \gamma) = g(\gamma) - c(\alpha) = g(\beta) - c(\alpha) + g(\gamma) - c(\beta)
\]

\[
\implies c(\beta) = g(\beta)
\]

\[
\Rightarrow f(\alpha, \beta) = g(\beta) - g(\alpha)
\]

- Next, write D in terms of \(g(\cdot) \)

\[
g(\beta \delta) - g(\alpha \gamma) = g(\beta) - g(\alpha) + g(\delta) - g(\gamma)
\]

Take derivative w.r.t \(\delta \) of both sides to get

\[
\beta g'(\beta \delta) = g'(\delta)
\]
Set $\delta = 1/2$ (could be $\delta = 1$ but scared to try)

$$\beta g'(\beta/2) = g'(1/2) = K, \text{ a constant}$$

and so

$$g'(\beta/2) = K/\beta$$

Take the integral of both sides with respect to β to get

$$g(\beta/2) = K \ln(\beta) + C$$

So

$$g(x) = K \ln(2x) + C$$

or

$$g(x) = K \ln(x) + \tilde{C}$$

Thus

$$f(\alpha, \beta) = g(\beta) - g(\alpha) = K \ln(\beta) - K \ln(\alpha) = K \ln(\beta/\alpha)$$

- By A,

$$i(x, y) = K \ln \left(\frac{p(x|y)}{p(x)} \right)$$

Choosing K is equivalent to choosing the log base:

- $K = 1$ corresponds to measuring information in nats
- $K = \log_2(e)$ corresponds to measuring information in bits