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10.1 Point-to-Point Communication

The fundamental problem of communication is that of reproducing at one point, either
exactly or approximately, a message selected at another point

— Claude Shannon

10.1.1 Recap of Main Theorems

e Lossless Source Coding: For a discrete iid source with pmf p(z), the expected length

E[¢(X)] of the optimal uniquely decodable D-ary source code satisfies

H(X)
log D

H(X)
log D

+1

<E[(X)] <

By coding over blocks of length n, the expected number of code symbols per source symbol

of the optimal uniquely decodable D-ary source code satisfies

H(X 1 H(X 1
(X) < LEjxm) (X) 1
logD — n logD n
More generally, for a stationary ergodic source X1, X, ..., the fundamental limit of compres-

sion, measured in bits per source symbol, is given by the entropy rate H(X), computed using

the base 2 logarithm.

e Channel Coding: For a discrete memoryless channel p(y | x), there exists a sequence of
rate R block-length n coding schemes with error probability tending to zero provided that R

is less than the capacity C', which given by

C=maxI(X;Y).
p(z)

Conversely, if R > C' then the probability off error is bounded away from zero.
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e Gaussian Channel: For an additive white gaussian noise channel with power constraint P
and noise variance IV, the capacity is given by

1 P
C= 210g<1+N>

e Lossy Source Coding: For a discrete iid source with pmf p(z) and bounded distortion
measure d(z, ) there exists a sequence of rate R block-length n coding scheme with distortion
satisfying

lim supE[d(X”, X”)} <D

n—oo

provided that R is greater than the rate-distortion function R(D), which is given by

R(D) = min  I(X;X)
p([x) : E[d(X,X)|<D

e Gaussian Source: For an iid Gaussian source A/ (0, 0?) and squared-error distortion d(z, &) =
(x — 2)2, the rate distortion function is given by

*1 1() (U > “<D< 2
g , g

0, D > o2

10.1.2 Source Channel Separation Theorem

e Suppose we want to communicate an iid source Uy, Us,--- , U, with n uses of a memoryless
channel with capacity C' while incurring a distortion no greater than D.

e Joint source and channel coding:

source reconstruction

X" yn» .
o i

o Encoder: maps source U™ into channel input X"

o Decoder: maps channel output Y™ into reconstruction U™

e Separate source and channel coding:

source
source We{l,... 27" channel
Ur ——
encoder encoder
yn X"
. WR reconstruction
channel We{l,... 2"} source )
e — Un
decoder decoder
o Source encoder: maps source U" into message W € {1,2,--- ,Q”R}

o Channel encoder: maps message W into channel input X"



ECE 587 / STA 563: Lecture 10 3

o Channel decoder: maps channel output Y into message estimate W e {1,2,--- ,2”R}

o Source decoder: maps message estimate into reconstruction U"

e Theorem: (Source-Channel Separation) Suppose we want to send an iid source with with
rate distortion function R(D) across a discrete memoryless channel with capacity C. A
distortion D is achievable if and only if

C > R(D)
Furthermore, there is no loss in using separate source and channel coding.

e Example with uncoded transmission: Let U;,Us,... be a sequence of iid Gaussian
variables with mean zero and variance 2. Suppose these values are transmitted over a

Gaussian noise channel with noise power N and power constraint P according to the encoding

scheme
P
X = 7fUi
o

such that

VP

Yi=—U+ 2%
g

Suppose that the reconstruction of U; is given by the conditional expectation:

. VPo
Ui:E[Ui|Yi]:P+Ni

Then, the squared error distortion of this coding scheme is

0_2

D =E[U; -E[U; | Y])?] = 1+ P/N

Equivalently,

o 1+P <— 11 o? 11 1+P
D N 2%\ D) T 2% N

R(D) c

Hence, the distortion is precisely the distortion-rate function D(R) of the Gaussian source
evaluated at the the capacity of the Gaussian channel.

10.2 Application to Statistical inference

10.2.1 Paramter Estimation

e Suppose that data X7, ..., X, are drawn i.i.d. from a family of probability measure P indexed
by a parameter 6 € ©.

e The minimax risk associated with a loss function L(6, ) is defined by

where the infimum is over all estimators (-).
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e For any prior distribution 7 supported on ©, the minimax risk is bounded from below by the
Bayes risk, which is defined by

B(m) = f By, [L(0,6(X"™))]

An estimator the achieves the infimum is called the Bayes rule.
e Suppose that:

o the “source” defined by 7 has rate-distortion function R(D) with respect to the loss
function L(0,0).

o the mutual information defined by 7 and P9®" is given by I(60; X™).

Then, the Bayes risk is bounded from below by the distortion-rate function D(R) evaluated
at 1(6; X™), i.e.,

Bases risk at # > D(I(0; X™))
Note that if I(0; X™) can be bounded from above by the capacity of the the “channel” defined
by Pg@n.

10.2.2 Linear Model

e Suppose that data (X,Y) € R"*P x R™ depend on an unknown parameter 5 € RP according
to the model
Y =XB+ 72, Z ~N(0,0%I,)

e Suppose that § is drawn according to a prior distribution 7 with mean zero and identity
covariance.

e The mutual information satisfies

I(8; X,Y) =1(B;Y | X)
=h(Y | X)-n(Y | X,5)
= h(Y | X)—glog(QweJQ)

Furthermore, the entropy of Y | X is bounded from above by the Gaussian distribution of
the same mean and variance, and so

WY | X) < g log(2me) + log det(02I, + XX T)
Whence,

1
I(8;X,Y) < 5 log det (In + a—2XXT)
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