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10.1 Point-to-Point Communication

The fundamental problem of communication is that of reproducing at one point, either
exactly or approximately, a message selected at another point

— Claude Shannon

10.1.1 Recap of Main Theorems

• Lossless Source Coding: For a discrete iid source with pmf p(x), the expected length
E[`(X)] of the optimal uniquely decodable D-ary source code satisfies

H(X)

logD
≤ E[`(X)] <

H(X)

logD
+ 1

By coding over blocks of length n, the expected number of code symbols per source symbol
of the optimal uniquely decodable D-ary source code satisfies

H(X)

logD
≤ 1

n
E[`(Xn)] <

H(X)

logD
+

1

n

More generally, for a stationary ergodic source X1, X2, . . . , the fundamental limit of compres-
sion, measured in bits per source symbol, is given by the entropy rate H(X ), computed using
the base 2 logarithm.

• Channel Coding: For a discrete memoryless channel p(y | x), there exists a sequence of
rate R block-length n coding schemes with error probability tending to zero provided that R
is less than the capacity C, which given by

C = max
p(x)

I(X;Y ).

Conversely, if R > C then the probability off error is bounded away from zero.
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• Gaussian Channel: For an additive white gaussian noise channel with power constraint P
and noise variance N , the capacity is given by

C =
1

2
log

(
1 +

P

N

)
• Lossy Source Coding: For a discrete iid source with pmf p(x) and bounded distortion

measure d(x, x̂) there exists a sequence of rate R block-length n coding scheme with distortion
satisfying

lim sup
n→∞

E
[
d(Xn, X̂n)

]
≤ D

provided that R is greater than the rate-distortion function R(D), which is given by

R(D) = min
p(x̂|x) :E[d(X,X̂)]≤D

I(X; X̂)

• Gaussian Source: For an iid Gaussian sourceN (0, σ2) and squared-error distortion d(x, x̂) =
(x− x̂)2, the rate distortion function is given by

R(D) =


1

2
log

(
σ2

D

)
, 0 ≤ D ≤ σ2

0, D > σ2

10.1.2 Source Channel Separation Theorem

• Suppose we want to communicate an iid source U1, U2, · · · , Un with n uses of a memoryless
channel with capacity C while incurring a distortion no greater than D.

• Joint source and channel coding:

Un
source

encoder channel decoder Ûn

reconstruction
Xn Y n

◦ Encoder: maps source Un into channel input Xn

◦ Decoder: maps channel output Y n into reconstruction Ûn

• Separate source and channel coding:

Un
source

source
encoder

channel
encoder

channel
decoder

channel

source
decoder Ûn

reconstruction

W ∈ {1, . . . , 2nR}

XnY n

Ŵ ∈ {1, . . . , 2nR}

◦ Source encoder: maps source Un into message W ∈ {1, 2, · · · , 2nR}
◦ Channel encoder: maps message W into channel input Xn
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◦ Channel decoder: maps channel output Y n into message estimate Ŵ ∈ {1, 2, · · · , 2nR}
◦ Source decoder: maps message estimate into reconstruction Ûn

• Theorem: (Source-Channel Separation) Suppose we want to send an iid source with with
rate distortion function R(D) across a discrete memoryless channel with capacity C. A
distortion D is achievable if and only if

C > R(D)

Furthermore, there is no loss in using separate source and channel coding.

• Example with uncoded transmission: Let U1, U2, . . . be a sequence of iid Gaussian
variables with mean zero and variance σ2. Suppose these values are transmitted over a
Gaussian noise channel with noise power N and power constraint P according to the encoding
scheme

Xi =

√
P

σ
Ui

such that

Yi =

√
P

σ
Ui + Zi

Suppose that the reconstruction of Ui is given by the conditional expectation:

Ûi = E[Ui | Yi] =

√
Pσ

P +N
Yi

Then, the squared error distortion of this coding scheme is

D = E
[
(Ui − E[Ui | Y ])2

]
=

σ2

1 + P/N

Equivalently,

σ2

D
= 1 +

P

N
⇐⇒ 1

2
log

(
σ2

D

)
︸ ︷︷ ︸

R(D)

=
1

2
log

(
1 +

P

N

)
︸ ︷︷ ︸

C

Hence, the distortion is precisely the distortion-rate function D(R) of the Gaussian source
evaluated at the the capacity of the Gaussian channel.

10.2 Application to Statistical inference

10.2.1 Paramter Estimation

• Suppose that data X1, . . . , Xn are drawn i.i.d. from a family of probability measure Pθ indexed
by a parameter θ ∈ Θ.

• The minimax risk associated with a loss function L(θ, θ̂) is defined by

M(Θ) = inf
δ

max
θ∈Θ

E
Xniid∼Pθ

[L(θ, δ(Xn))]

where the infimum is over all estimators δ(·).
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• For any prior distribution π supported on Θ, the minimax risk is bounded from below by the
Bayes risk, which is defined by

B(π) = inf
δ
E
θ∼π,Xniid∼Pθ

[L(θ, δ(Xn))]

An estimator the achieves the infimum is called the Bayes rule.

• Suppose that:

◦ the “source” defined by π has rate-distortion function R(D) with respect to the loss
function L(θ, θ̂).

◦ the mutual information defined by π and P⊗nθ is given by I(θ;Xn).

Then, the Bayes risk is bounded from below by the distortion-rate function D(R) evaluated
at I(θ;Xn), i.e.,

Bases risk at π ≥ D(I(θ;Xn))

Note that if I(θ;Xn) can be bounded from above by the capacity of the the “channel” defined
by P⊗nθ .

10.2.2 Linear Model

• Suppose that data (X,Y ) ∈ Rn×p × Rn depend on an unknown parameter β ∈ Rp according
to the model

Y = Xβ + Z, Z ∼ N (0, σ2In)

• Suppose that β is drawn according to a prior distribution π with mean zero and identity
covariance.

• The mutual information satisfies

I(β;X,Y ) = I(β;Y | X)

= h(Y | X)− h(Y | X,β)

= h(Y | X)− n

2
log(2πeσ2)

Furthermore, the entropy of Y | X is bounded from above by the Gaussian distribution of
the same mean and variance, and so

h(Y | X) ≤ n

2
log(2πe) + log det(σ2In +XX>)

Whence,

I(β;X,Y ) ≤ 1

2
log det

(
In + σ−2XX>

)
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